Efficiency and Optimality Properties of a Class of k-Sample Rank Test Against Trend.
The index of regularity of a measure was introduced by Beirlant, Berlinet and Biau [1] to solve practical problems in nearest neighbour density estimation such as removing bias or selecting the number of neighbours. These authors proved the weak consistency of an estimator based on the nearest neighbour density estimator. In this paper, we study an empirical version of the regularity index and give sufficient conditions for its weak and strong convergence without assuming absolute continuity or...
This paper studies quantile linear regression models with response data missing at random. A quantile empirical-likelihood-based method is proposed firstly to study a quantile linear regression model with response data missing at random. It follows that a class of quantile empirical log-likelihood ratios including quantile empirical likelihood ratio with complete-case data, weighted quantile empirical likelihood ratio and imputed quantile empirical likelihood ratio are defined for the regression...
Se definen en este trabajo r-desarrollos de Neumann y se prueba que toda densidad de probabilidad f admite un desarrollo r-convergente a f.Los resultados obtenidos se aplican a la estimación de f sin la suposición de que sea de cuadrado integrable, estudiándose propiedades asintóticas de los estimadores e ilustrándose con un ejemplo de aplicación.
Sea {Xt: t ∈ Z} una serie de tiempo estacionaria, con valores en Rp, verificando la condición de ser α-mixing o L2-estable. A partir de una muestra de tamaño n se define una amplia clase de estimadores no paramétricos de la función de densidad f(x) asociada al proceso, y de la función de autorregresión de orden k:r(y) = E(g(Xt+1)/(Xt-k+1 ... Xt) = y), y ∈ Rksiendo g una función real.Se estudian las siguientes propiedades asintóticas de estos estimadores: consistencia puntual (casi segura y en media...
Sea X una variable aleatoria con función de distribución F(x) y función de densidad f(x) y X1, X2,..., Xn un conjunto de observaciones de la variable que pueden ser dependientes. Se definen dos estimadores no paramétricos generales (uno recursivo y el otro no recursivo) de la función de distribución.Bajo condiciones aceptables se obtiene el sesgo y la varianza y covarianza asintótica de los estimadores definidos. Finalmente se prueban propiedades de consistencia y normalidad asintótica.
Se estudia la estimación de tipo no paramétrico de la función de riesgo o razón de fallo de una variable aleatoria real. A partir de una muestra X1, X2, ..., Xn de datos no censurados y no necesariamente independientes, se considera un estimador cociente entre el estimador núcleo de la función de densidad y un estimador núcleo de la función de supervivencia, sobre el que se estudia el problema de selección del parámetro ventana. Por medio de un estudio de simulación se observa la ventaja de utilizar...
The aim is to study the asymptotic behavior of estimators and tests for the components of identifiable finite mixture models of nonparametric densities with a known number of components. Conditions for identifiability of the mixture components and convergence of identifiable parameters are given. The consistency and weak convergence of the identifiable parameters and test statistics are presented for several models.
Consider an autoregressive model with measurement error: we observe Zi = Xi + εi, where the unobserved Xi is a stationary solution of the autoregressive equation Xi = gθ0(Xi − 1) + ξi. The regression function gθ0 is known up to a finite dimensional parameter θ0 to be estimated. The distributions of ξ1 and X0 are unknown and gθ belongs to a large class of parametric regression functions. The distribution of ε0is completely known. We propose an estimation procedure with a new criterion computed as...
Statistical inference procedures based on least absolute deviations involve estimates of a matrix which plays the role of a multivariate nuisance parameter. To estimate this matrix, we use kernel smoothing. We show consistency and obtain bounds on the rate of convergence.
A histogram sieve estimator of the drift function in Ito processes and some semimartingales is constructed. It is proved that the estimator is pointwise and L¹ consistent and its finite-dimensional distributions are asymptotically normal. Our approach extends the results of Leśkow and Różański (1989a).
We consider a failure hazard function, conditional on a time-independent covariate Z, given by . The baseline hazard function and the relative risk both belong to parametric families with . The covariate Z has an unknown density and is measured with an error through an additive error model U = Z + ε where ε is a random variable, independent from Z, with known density . We observe a n-sample (Xi, Di, Ui), i = 1, ..., n, where Xi is the minimum between the failure time and the censoring time, and...
The subject of this paper is to estimate adaptively the common probability density of independent, identically distributed random variables. The estimation is done at a fixed point , over the density functions that belong to the Sobolev class . We consider the adaptive problem setup, where the regularity parameter is unknown and varies in a given set . A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.
The subject of this paper is to estimate adaptively the common probability density of n independent, identically distributed random variables. The estimation is done at a fixed point , over the density functions that belong to the Sobolev class Wn(β,L). We consider the adaptive problem setup, where the regularity parameter β is unknown and varies in a given set Bn. A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.
Karhunen-Loève expansions of Gaussian processes have numerous applications in Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian processes for which a very explicit Karhunen-Loève expansion can be derived.