Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Global superconvergence of finite element methods for parabolic inverse problems

Hossein Azari, Shu Hua Zhang (2009)

Applications of Mathematics

In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.

Goal oriented a posteriori error estimates for the discontinuous Galerkin method

Dolejší, Vít, Roskovec, Filip (2017)

Programs and Algorithms of Numerical Mathematics

This paper is concerned with goal-oriented a posteriori error estimates for discontinous Galerkin discretizations of linear elliptic boundary value problems. Our approach combines the Dual Weighted Residual method (DWR) with local weighted least-squares reconstruction of the discrete solution. This technique is used not only for controlling the discretization error, but also to track the influence of the algebraic errors. We illustrate the performance of the proposed method by numerical experiments....

Godunov method for nonconservative hyperbolic systems

María Luz Muñoz-Ruiz, Carlos Parés (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximation of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The theory developed by Dal Maso et al. [J. Math. Pures Appl.74 (1995) 483–548] is used in order to define the weak solutions of the system: an interpretation of the nonconservative products as Borel measures is given, based on the choice of a family of paths drawn in the phase space. Even if the family of paths can be chosen arbitrarily, it is natural to require this...

Godunov-like numerical fluxes for conservation laws on networks

Vacek, Lukáš, Kučera, Václav (2023)

Programs and Algorithms of Numerical Mathematics

We describe a numerical technique for the solution of macroscopic traffic flow models on networks of roads. On individual roads, we consider the standard Lighthill-Whitham-Richards model which is discretized using the discontinuous Galerkin method along with suitable limiters. In order to solve traffic flows on networks, we construct suitable numerical fluxes at junctions based on preferences of the drivers. Numerical experiment comparing different approaches is presented.

Gradient descent and fast artificial time integration

Uri M. Ascher, Kees van den Doel, Hui Huang, Benar F. Svaiter (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

The integration to steady state of many initial value ODEs and PDEs using the forward Euler method can alternatively be considered as gradient descent for an associated minimization problem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach steady state as is forward Euler integration with the best uniform step size. But other, much faster methods using bolder step size selection exist. Various alternatives are investigated from both theoretical and practical...

Gradient-free and gradient-based methods for shape optimization of water turbine blade

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Horníková, Hana, Michálková, Kristýna, Turnerová, Eva (2019)

Programs and Algorithms of Numerical Mathematics

The purpose of our work is to develop an automatic shape optimization tool for runner wheel blades in reaction water turbines, especially in Kaplan turbines. The fluid flow is simulated using an in-house incompressible turbulent flow solver based on recently introduced isogeometric analysis (see e.g. J. A. Cotrell et al.: Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 2009). The proposed automatic shape optimization approach is based on a so-called hybrid optimization which combines...

Grid adjustment based on a posteriori error estimators

Karel Segeth (1993)

Applications of Mathematics

The adjustment of one-dimensional space grid for a parabolic partial differential equation solved by the finite element method of lines is considered in the paper. In particular, the approach based on a posteriori error indicators and error estimators is studied. A statement on the rate of convergence of the approximation of error by estimator to the error in the case of a system of parabolic equations is presented.

Currently displaying 21 – 29 of 29

Previous Page 2