Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients

Stefano Berrone (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ -scheme with 1 / 2 θ 1 . Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo 40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...

Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients

Stefano Berrone (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...

Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport*

Carlo D'Angelo, Paolo Zunino (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for...

Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport*

Carlo D'Angelo, Paolo Zunino (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The fully coupled description of blood flow and mass transport in blood vessels requires extremely robust numerical methods. In order to handle the heterogeneous coupling between blood flow and plasma filtration, addressed by means of Navier-Stokes and Darcy's equations, we need to develop a numerical scheme capable to deal with extremely variable parameters, such as the blood viscosity and Darcy's permeability of the arterial walls. In this paper, we describe a finite element method for...

Roe Scheme for Two-layer Shallow Water Equations: Application to the Strait of Gibraltar

M. Chakir, D. Ouazar, A. Taik (2009)

Mathematical Modelling of Natural Phenomena

The flow trough the Strait of Gibraltar could be analyzed as a problem of two-layer hydraulic exchange between the Atlantic ocean and the Mediterranean sea. The shallow water equations in both layers coupled together are an important tool to simulate this phenomenon. In this paper we perform an upwind schemes for hyperbolic equations based on the Roe approximate Riemann solver, to study the resulting model. The main goal assigned was to predict the location of the interface between the two layers....

Currently displaying 21 – 33 of 33

Previous Page 2