Displaying 501 – 520 of 1396

Showing per page

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present. Various physical parameters appearing in the...

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present....

Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems

Vít Dolejší, Miloslav Feistauer, Jiří Felcman, Alice Kliková (2002)

Applications of Mathematics

The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the L 2 ( L 2 ) and L 2 ( H 1 ) error estimates are established. At the end...

Error estimates for distributed parameter identification in parabolic problems with output least squares and Crank-Nicolson method

Tommi Kärkkäinen (1997)

Applications of Mathematics

The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.

Error estimates for Galerkin reduced-order models of the semi-discrete wave equation

D. Amsallem, U. Hetmaniuk (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums...

Error estimates for nonlinear convective problems in the finite element method

Kučera, Václav (2013)

Programs and Algorithms of Numerical Mathematics

We describe the basic ideas needed to obtain apriori error estimates for a nonlinear convection diffusion equation discretized by higher order conforming finite elements. For simplicity of presentation, we derive the key estimates under simplified assumptions, e.g. Dirichlet-only boundary conditions. The resulting error estimate is obtained using continuous mathematical induction for the space semi-discrete scheme.

Error estimates of an iterative method for a quasistatic elastic-visco-plastic problem

Ioan Rosca, Mircea Sofonea (1994)

Applications of Mathematics

This paper deals with an initial and boundary value problem describing the quasistatic evolution of rate-type viscoplastic materials. Using a fixed point property, an iterative method in the study of this problem is proposed. A concrete algorithm as well as some numerical results in the one-dimensional case are also presented.

Error of the two-step BDF for the incompressible Navier-Stokes problem

Etienne Emmrich (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional case....

Error of the two-step BDF for the incompressible Navier-Stokes problem

Etienne Emmrich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional...

Currently displaying 501 – 520 of 1396