Displaying 861 – 880 of 1396

Showing per page

Numerical simulation of chemotactic bacteria aggregation via mixed finite elements

Americo Marrocco (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution algorithm...

Numerical simulation of chemotactic bacteria aggregation via mixed finite elements

Americo Marrocco (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution...

Numerical simulation of free-surface flows with surface tension

Sváček, Petr (2015)

Programs and Algorithms of Numerical Mathematics

This paper focuses on the mathematical modelling and the numerical approximation of the flow of two immiscible incompressible fluids. The surface tension effects are taken into account and mixed boundary conditions are used. The weak formulation is introduced, discretized in time, and the finite element method is applied. The free surface motion is treated with the aid of the level set method. The numerical results are shown.

Numerical simulation of surface acoustic wave actuated cell sorting

Thomas Franke, Ronald Hoppe, Christopher Linsenmann, Kidist Zeleke (2013)

Open Mathematics

We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer...

Numerical simulations of wave breaking

Philippe Helluy, Frédéric Golay, Jean-Paul Caltagirone, Pierre Lubin, Stéphane Vincent, Deborah Drevard, Richard Marcer, Philippe Fraunié, Nicolas Seguin, Stephan Grilli, Anne-Cécile Lesage, Alain Dervieux, Olivier Allain (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.

Numerical simulations of wave breaking

Philippe Helluy, Frédéric Golay, Jean-Paul Caltagirone, Pierre Lubin, Stéphane Vincent, Deborah Drevard, Richard Marcer, Philippe Fraunié, Nicolas Seguin, Stephan Grilli, Anne-Cécile Lesage, Alain Dervieux, Olivier Allain (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.

Numerical solution of a new hydrodynamic model of flocking

Kučera, Václav, Živčáková, Andrea (2015)

Programs and Algorithms of Numerical Mathematics

This work is concerned with the numerical solution of a hydrodynamic model of the macroscopic behavior of flocks of birds due to Fornasier et al., 2011. The model consists of the compressible Euler equations with an added nonlocal, nonlinear right-hand side. As noticed by the authors of the model, explicit time schemes are practically useless even on very coarse grids in 1D due to the nonlocal nature of the equations. To this end, we apply a semi-implicit discontinuous Galerkin method to solve the...

Numerical solution of an inverse initial boundary value problem for the wave equation in the presence of conductivity imperfections of small volume

Mark Asch, Marion Darbas, Jean-Baptiste Duval (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the numerical solution, in two- and three-dimensional bounded domains, of the inverse problem for identifying the location of small-volume, conductivity imperfections in a medium with homogeneous background. A dynamic approach, based on the wave equation, permits us to treat the important case of “limited-view” data. Our numerical algorithm is based on the coupling of a finite element solution of the wave equation, an exact controllability method and finally a Fourier inversion for localizing...

Numerical solution of an inverse initial boundary value problem for the wave equation in the presence of conductivity imperfections of small volume

Mark Asch, Marion Darbas, Jean-Baptiste Duval (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the numerical solution, in two- and three-dimensional bounded domains, of the inverse problem for identifying the location of small-volume, conductivity imperfections in a medium with homogeneous background. A dynamic approach, based on the wave equation, permits us to treat the important case of “limited-view” data. Our numerical algorithm is based on the coupling of a finite element solution of the wave equation, an exact controllability method and finally a Fourier inversion for...

Numerical Solution of Fractional Diffusion-Wave Equation with two Space Variables by Matrix Method

Garg, Mridula, Manohar, Pratibha (2010)

Fractional Calculus and Applied Analysis

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines.

Numerical solution of parabolic equations in high dimensions

Tobias Von Petersdorff, Christoph Schwab (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the numerical solution of diffusion problems in ( 0 , T ) × Ω for Ω d and for T > 0 in dimension d 1 . We use a wavelet based sparse grid space discretization with mesh-width h and order p 1 , and h p discontinuous Galerkin time-discretization of order r = O ( log h ) on a geometric sequence of O ( log h ) many time steps. The linear systems in each time step are solved iteratively by O ( log h ) GMRES iterations with a wavelet preconditioner. We prove that this algorithm gives an L 2 ( Ω ) -error of O ( N - p ) for u ( x , T ) where N is the total number of operations,...

Numerical solution of parabolic equations in high dimensions

Tobias von Petersdorff, Christoph Schwab (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the numerical solution of diffusion problems in (0,T) x Ω for Ω d and for T > 0 in dimension dd ≥ 1. We use a wavelet based sparse grid space discretization with mesh-width h and order pd ≥ 1, and hp discontinuous Galerkin time-discretization of order r = O ( log h ) on a geometric sequence of O ( log h ) many time steps. The linear systems in each time step are solved iteratively by O ( log h ) GMRES iterations with a wavelet preconditioner. We prove that this algorithm gives an L2(Ω)-error of O(N-p) for u(x,T)...

Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets

Mahmood Jokar, Mehrdad Lakestani (2012)

Kybernetika

A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses the trigonometric wavelets. The method consists of expanding the required approximate solution as the elements of trigonometric wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. Some numerical example is included to demonstrate the validity and applicability of the technique. The method produces very accurate...

Numerical solution of several models of internal transonic flow

Jaroslav Fořt, Karel Kozel (2003)

Applications of Mathematics

The paper deals with numerical solution of internal flow problems. It mentions a long tradition of mathematical modeling of internal flow, especially transonic flow at our department. Several models of flow based on potential equation, Euler equations, Navier-Stokes and Reynolds averaged Navier-Stokes equations with proper closure are considered. Some mathematical and numerical properties of the model are mentioned and numerical results achieved by in-house developed methods are presented.

Numerical solution of the Kiessl model

Josef Dalík, Josef Daněček, Jiří Vala (2000)

Applications of Mathematics

The Kiessl model of moisture and heat transfer in generally nonhomogeneous porous materials is analyzed. A weak formulation of the problem of propagation of the state parameters of this model, which are so-called moisture potential and temperature, is derived. An application of the method of discretization in time leads to a system of boundary-value problems for coupled pairs of nonlinear second order ODE’s. Some existence and regularity results for these problems are proved and an efficient numerical...

Currently displaying 861 – 880 of 1396