We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer...
This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.
This paper is devoted to the numerical simulation of wave
breaking. It presents the results of a numerical workshop that was
held during the conference LOMA04. The objective is to compare
several mathematical models (compressible or incompressible) and
associated numerical methods to compute the flow field during a
wave breaking over a reef. The methods will also be compared with
experiments.
This work is concerned with the numerical solution of a hydrodynamic model of the macroscopic behavior of flocks of birds due to Fornasier et al., 2011. The model consists of the compressible Euler equations with an added nonlocal, nonlinear right-hand side. As noticed by the authors of the model, explicit time schemes are practically useless even on very coarse grids in 1D due to the nonlocal nature of the equations. To this end, we apply a semi-implicit discontinuous Galerkin method to solve the...
We consider the numerical solution, in two- and three-dimensional bounded domains, of the inverse problem for identifying the location of small-volume, conductivity imperfections in a medium with homogeneous background. A dynamic approach, based on the wave equation, permits us to treat the important case of “limited-view” data. Our numerical algorithm is based on the coupling of a finite element solution of the wave equation, an exact controllability method and finally a Fourier inversion for localizing...
We consider the numerical solution, in two- and three-dimensional
bounded domains, of the inverse problem for identifying the location
of small-volume, conductivity imperfections in a medium with homogeneous
background. A dynamic approach, based on the wave equation, permits
us to treat the important case of “limited-view” data. Our numerical
algorithm is based on the coupling of a finite element solution of
the wave equation, an exact controllability method and finally a Fourier
inversion for...
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines.
We consider the numerical solution of diffusion problems in for and for in dimension . We use a wavelet based sparse grid space discretization with mesh-width and order , and discontinuous Galerkin time-discretization of order on a geometric sequence of many time steps. The linear systems in each time step are solved iteratively by GMRES iterations with a wavelet preconditioner. We prove that this algorithm gives an -error of for where is the total number of operations,...
We consider the numerical solution of diffusion problems in (0,T) x Ω for and for T > 0 in
dimension dd ≥ 1. We use a wavelet based sparse grid
space discretization with mesh-width h and order pd ≥ 1, and
hp discontinuous Galerkin time-discretization of order on a geometric sequence of many time
steps. The linear systems in each time step are solved iteratively
by GMRES iterations with a wavelet preconditioner.
We prove that this algorithm gives an L2(Ω)-error of
O(N-p) for u(x,T)...
The paper deals with numerical solution of internal flow problems. It mentions a long tradition of mathematical modeling of internal flow, especially transonic flow at our department. Several models of flow based on potential equation, Euler equations, Navier-Stokes and Reynolds averaged Navier-Stokes equations with proper closure are considered. Some mathematical and numerical properties of the model are mentioned and numerical results achieved by in-house developed methods are presented.
The Kiessl model of moisture and heat transfer in generally nonhomogeneous porous materials is analyzed. A weak formulation of the problem of propagation of the state parameters of this model, which are so-called moisture potential and temperature, is derived. An application of the method of discretization in time leads to a system of boundary-value problems for coupled pairs of nonlinear second order ODE’s. Some existence and regularity results for these problems are proved and an efficient numerical...