Variational formulation and analysis of a linearized 2-D model with no axial symmetry for a two-phase water-petroleum flow.
Parameter sensitivities of prices for derivative contracts play an important role in model calibration as well as in quantification of model risk. In this paper a unified approach to the efficient numerical computation of all sensitivities for Markovian market models is presented. Variational approximations of the integro-differential equations corresponding to the infinitesimal generators of the market model differentiated with respect to the model parameters are employed. Superconvergent approximations...
This paper concerns the discretization of multiphase Darcy flows, in the case of heterogeneous anisotropic porous media and general 3D meshes used in practice to represent reservoir and basin geometries. An unconditionally coercive and symmetric vertex centred approach is introduced in this paper. This scheme extends the Vertex Approximate Gradient scheme (VAG), already introduced for single phase diffusive problems in [9], to multiphase Darcy flows....
There are two mathematical models of elastic walls of healthy and atherosclerotic blood vessels developed and studied. The models are included in a numerical model of global blood circulation via recovery of the vessel wall state equation. The joint model allows us to study the impact of arteries atherosclerotic disease of a set of arteries on regional haemodynamics.
We consider mathematical models describing dynamics of an elastic beam which is clamped at its left end to a vibrating support and which can move freely at its right end between two rigid obstacles. We model the contact with Signorini's complementary conditions between the displacement and the shear stress. For this infinite dimensional contact problem, we propose a family of fully discretized approximations and their convergence is proved. Moreover some examples of implementation are presented....
We present a new methodology for the numerical resolution of the hydrodynamics of incompressible viscid newtonian fluids. It is based on the Navier-Stokes equations and we refer to it as the vorticity projection method. The method is robust enough to handle complex and convoluted configurations typical to the motion of biological structures in viscous fluids. Although the method is applicable to three dimensions, we address here in detail only the two dimensional case. We provide numerical data...
We present a new methodology for the numerical resolution of the hydrodynamics of incompressible viscid newtonian fluids. It is based on the Navier-Stokes equations and we refer to it as the vorticity projection method. The method is robust enough to handle complex and convoluted configurations typical to the motion of biological structures in viscous fluids. Although the method is applicable to three dimensions, we address here in detail only the two dimensional case. We provide numerical data...
This paper examines the pricing of two-asset European options under the Merton model represented by a nonstationary integro-differential equation with two state variables. For its numerical solution, the wavelet-Galerkin method combined with the Crank-Nicolson scheme is used. A drawback of most classical methods is the full structure of discretization matrices. In comparison, the wavelet method enables the approximation of discretization matrices with sparse matrices. Sparsity is essential for the...
A new fifth-order weighted essentially nonoscillatory (WENO) scheme is designed to approximate Hamilton-Jacobi equations. As employing a fifth-order linear approximation and three third-order ones on the same six-point stencil as before, a newly considered WENO-Z methodology is adapted to define nonlinear weights and the final WENO reconstruction results in a simple and clear convex combination. The scheme has formal fifth-order accuracy in smooth regions of the solution and nonoscillating behavior...
Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density . Their time-evolution leads to a nonlinear wave equation with the non-monotone stress-strain relation plus proper boundary and initial conditions. This hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-measure solutions. This paper introduces a fully-numerical time-space discretization of this equation in a corresponding very...
Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density ϕ. Their time-evolution leads to a nonlinear wave equation with the non-monotone stress-strain relation plus proper boundary and initial conditions. This hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-measure solutions. This paper introduces a fully-numerical time-space discretization of this equation in a corresponding...