Displaying 61 – 80 of 128

Showing per page

Finite element approximation of a contact vector eigenvalue problem

Hennie de Schepper, Roger Van Keer (2003)

Applications of Mathematics

We consider a nonstandard elliptic eigenvalue problem of second order on a two-component domain consisting of two intervals with a contact point. The interaction between the two domains is expressed through a coupling condition of nonlocal type, more specifically, in integral form. The problem under consideration is first stated in its variational form and next interpreted as a second-order differential eigenvalue problem. The aim is to set up a finite element method for this problem. The error...

Guaranteed and fully computable two-sided bounds of Friedrichs’ constant

Vejchodský, Tomáš (2013)

Programs and Algorithms of Numerical Mathematics

This contribution presents a general numerical method for computing lower and upper bound of the optimal constant in Friedrichs’ inequality. The standard Rayleigh-Ritz method is used for the lower bound and the method of 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 - 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 is employed for the upper bound. Several numerical experiments show applicability and accuracy of this approach.

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed....

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed. Elements of a discretization of the eigenvalue...

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed. Elements of a discretization of the eigenvalue...

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed....

Mixed approximation of eigenvalue problems: A superconvergence result

Francesca Gardini (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We state a superconvergence result for the lowest order Raviart-Thomas approximation of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed approximation of Laplace problem; here we introduce a new proof, since the one given for the source problem cannot be generalized in a straightforward way to the eigenvalue problem. Numerical experiments confirm the superconvergence property and suggest that it also holds for the lowest order Brezzi-Douglas-Marini...

Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case

Jean Luc Guermond, Peter D. Minev (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.

Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case

Jean Luc Guermond, Peter D. Minev (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.

Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

Qin Li, Qun Lin, Hehu Xie (2013)

Applications of Mathematics

The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q 1 rot , E Q 1 rot and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...

Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian

Yvon Maday, Gabriel Turinici (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Many problems in quantum chemistry deal with the computation of fundamental or excited states of molecules and lead to the resolution of eigenvalue problems. One of the major difficulties in these computations lies in the very large dimension of the systems to be solved. Indeed these eigenfunctions depend on 3 n variables where n stands for the number of particles (electrons and/or nucleari) in the molecule. In order to diminish the size of the systems to be solved, the chemists have proposed many...

Numerical Analysis of the Adiabatic Variable Method for the Approximation of the Nuclear Hamiltonian

Yvon Maday, Gabriel Turinici (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Many problems in quantum chemistry deal with the computation of fundamental or excited states of molecules and lead to the resolution of eigenvalue problems. One of the major difficulties in these computations lies in the very large dimension of the systems to be solved. Indeed these eigenfunctions depend on 3n variables where n stands for the number of particles (electrons and/or nucleari) in the molecule. In order to diminish the size of the systems to be solved, the chemists have proposed...

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Currently displaying 61 – 80 of 128