Displaying 181 – 200 of 1411

Showing per page

A posteriori error estimates with post-processing for nonconforming finite elements

Friedhelm Schieweck (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited...

A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements

Friedhelm Schieweck (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is...

A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization

Chunmei Wang (2014)

Applications of Mathematics

In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by ( 1 + log ( H / h ) ) 2 , where H and h are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.

A priori convergence of the greedy algorithm for the parametrized reduced basis method

Annalisa Buffa, Yvon Maday, Anthony T. Patera, Christophe Prud’homme, Gabriel Turinici (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...

A priori convergence of the Greedy algorithm for the parametrized reduced basis method

Annalisa Buffa, Yvon Maday, Anthony T. Patera, Christophe Prud’homme, Gabriel Turinici (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...

A priori convergence of the Greedy algorithm for the parametrized reduced basis method

Annalisa Buffa, Yvon Maday, Anthony T. Patera, Christophe Prud’homme, Gabriel Turinici (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...

A priori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem

Carolina Domínguez, Gabriel N. Gatica, Salim Meddahi, Ricardo Oyarzúa (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The model consists of an elastic body which is subject to a given incident wave that travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located far from the obstacle. The media are governed by the elastodynamic...

A priori error estimates for Lagrange interpolation on triangles

Kenta Kobayashi, Takuya Tsuchiya (2015)

Applications of Mathematics

We present the error analysis of Lagrange interpolation on triangles. A new a priori error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates. To derive the new error estimate, we make use of the two key observations. The first is that squeezing a right isosceles triangle perpendicularly does not reduce the approximation property of Lagrange interpolation....

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers as...

Currently displaying 181 – 200 of 1411