Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations
The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed...
Contact problems with given friction and the coefficient of friction depending on their solutions are studied. We prove the existence of at least one solution; uniqueness is obtained under additional assumptions on the coefficient of friction. The method of successive approximations combined with the dual formulation of each iterative step is used for numerical realization. Numerical results of model examples are shown.
Acute triangles are defined by having all angles less than , and are characterized as the triangles containing their circumcenter in the interior. For simplices of dimension , acuteness is defined by demanding that all dihedral angles between -dimensional faces are smaller than . However, there are, in a practical sense, too few acute simplices in general. This is unfortunate, since the acuteness property provides good qualitative features for finite element methods. The property of acuteness...
Over the past fifty years, finite element methods for the approximation of solutions of partial differential equations (PDEs) have become a powerful and reliable tool. Theoretically, these methods are not restricted to PDEs formulated on physical domains up to dimension three. Although at present there does not seem to be a very high practical demand for finite element methods that use higher dimensional simplicial partitions, there are some advantages in studying the methods independent of the...
When analysing general systems of PDEs, it is important first to find the involutive form of the initial system. This is because the properties of the system cannot in general be determined if the system is not involutive. We show that the notion of involutivity is also interesting from the numerical point of view. The use of the involutive form of the system allows one to consider quite general situations in a unified way. We illustrate our approach on the numerical solution of several flow equations...
When analysing general systems of PDEs, it is important first to find the involutive form of the initial system. This is because the properties of the system cannot in general be determined if the system is not involutive. We show that the notion of involutivity is also interesting from the numerical point of view. The use of the involutive form of the system allows one to consider quite general situations in a unified way. We illustrate our approach on the numerical solution of several flow equations...
In this paper we derive a posteriori error estimates for the heat equation. The time discretization strategy is based on a θ-method and the mesh used for each time-slab is independent of the mesh used for the previous time-slab. The novelty of this paper is an upper bound for the error caused by the coarsening of the mesh used for computing the solution in the previous time-slab. The technique applied for deriving this upper bound is independent of the problem and can be generalized to other time...
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
We prove that within the frame of smoothed prolongations, rapid coarsening between first two levels can be compensated by massive prolongation smoothing and pre- and post-smoothing derived from the prolongator smoother.
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads...