Displaying 101 – 120 of 1411

Showing per page

A mixed formulation of a sharp interface model of stokes flow with moving contact lines

Shawn W. Walker (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Two-phase fluid flows on substrates (i.e. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface, front-tracking...

A Mixed Formulation of the Monge-Kantorovich Equations

John W. Barrett, Leonid Prigozhin (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce and analyse a mixed formulation of the Monge-Kantorovich equations, which express optimality conditions for the mass transportation problem with cost proportional to distance. Furthermore, we introduce and analyse the finite element approximation of this formulation using the lowest order Raviart-Thomas element. Finally, we present some numerical experiments, where both the optimal transport density and the associated Kantorovich potential are computed for a coupling problem and problems...

A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi, Virginia Selgas (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi, Virginia Selgas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

María-Luisa Rapún, Francisco-Javier Sayas (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the...

A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

María-Luisa Rapún, Francisco-Javier Sayas (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the...

A moving mesh fictitious domain approach for shape optimization problems

Raino A.E. Mäkinen, Tuomo Rossi, Jari Toivanen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new numerical method based on fictitious domain methods for shape optimization problems governed by the Poisson equation is proposed. The basic idea is to combine the boundary variation technique, in which the mesh is moving during the optimization, and efficient fictitious domain preconditioning in the solution of the (adjoint) state equations. Neumann boundary value problems are solved using an algebraic fictitious domain method. A mixed formulation based on boundary Lagrange multipliers is...

A multilevel Newton's method for eigenvalue problems

Yunhui He, Yu Li, Hehu Xie, Chun'guang You, Ning Zhang (2018)

Applications of Mathematics

We propose a new type of multilevel method for solving eigenvalue problems based on Newton's method. With the proposed iteration method, solving an eigenvalue problem on the finest finite element space is replaced by solving a small scale eigenvalue problem in a coarse space and a sequence of augmented linear problems, derived by Newton step in the corresponding sequence of finite element spaces. This iteration scheme improves overall efficiency of the finite element method for solving eigenvalue...

A multilevel preconditioner for the mortar method for nonconforming P1 finite element

Talal Rahman, Xuejun Xu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

A multilevel preconditioner based on the abstract framework of the auxiliary space method, is developed for the mortar method for the nonconforming P1 finite element or the lowest order Crouzeix-Raviart finite element on nonmatching grids. It is shown that the proposed preconditioner is quasi-optimal in the sense that the condition number of the preconditioned system is independent of the mesh size, and depends only quadratically on the number of refinement levels. Some numerical results confirming...

A multiscale correction method for local singular perturbations of the boundary

Marc Dambrine, Grégory Vial (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution uE of a second order elliptic equation posed in the perturbed domain with respect to the size parameter ε of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of uE based on a multiscale superposition of the unperturbed solution u0 and a profile defined in a model domain. We...

A Multiscale Enrichment Procedure for Nonlinear Monotone Operators

Y. Efendiev, J. Galvis, M. Presho, J. Zhou (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and...

A Multiscale Model Reduction Method for Partial Differential Equations

Maolin Ci, Thomas Y. Hou, Zuoqiang Shi (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a multiscale model reduction method for partial differential equations. The main purpose of this method is to derive an effective equation for multiscale problems without scale separation. An essential ingredient of our method is to decompose the harmonic coordinates into a smooth part and a highly oscillatory part so that the smooth part is invertible and the highly oscillatory part is small. Such a decomposition plays a key role in our construction of the effective equation. We show...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

Currently displaying 101 – 120 of 1411