Displaying 1281 – 1300 of 1415

Showing per page

The discrete compactness property for anisotropic edge elements on polyhedral domains∗

Ariel Luis Lombardi (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519–549]. They are appropriately graded near singular corners and edges of the polyhedron.

The discrete maximum principle for Galerkin solutions of elliptic problems

Tomáš Vejchodský (2012)

Open Mathematics

This paper provides an equivalent characterization of the discrete maximum principle for Galerkin solutions of general linear elliptic problems. The characterization is formulated in terms of the discrete Green’s function and the elliptic projection of the boundary data. This general concept is applied to the analysis of the discrete maximum principle for the higher-order finite elements in one-dimension and to the lowest-order finite elements on simplices of arbitrary dimension. The paper surveys...

The effect of reduced integration in the Steklov eigenvalue problem

Maria G. Armentano (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

The effect of reduced integration in the Steklov eigenvalue problem

María G. Armentano (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

The existence and uniqueness theorem in Biot's consolidation theory

Alexander Ženíšek (1984)

Aplikace matematiky

Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.

The finite element solution of parabolic equations

Josef Nedoma (1978)

Aplikace matematiky

In contradistinction to former results, the error bounds introduced in this paper are given for fully discretized approximate soltuions of parabolic equations and for arbitrary curved domains. Simplicial isoparametric elements in n -dimensional space are applied. Degrees of accuracy of quadrature formulas are determined so that numerical integration does not worsen the optimal order of convergence in L 2 -norm of the method.

The general form of local bilinear functions

Milan Práger (1993)

Applications of Mathematics

The scalar product of the FEM basis functions with non-intersecting supports vanishes. This property is generalized and the concept of local bilinear functional in a Hilbert space is introduced. The general form of such functionals in the spaces L 2 ( a , b ) and H 1 ( a , b ) is given.

The generalized finite volume SUSHI scheme for the discretization of the peaceman model

Mohamed Mandari, Mohamed Rhoudaf, Ouafa Soualhi (2021)

Applications of Mathematics

We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later,...

Currently displaying 1281 – 1300 of 1415