Displaying 1061 – 1080 of 2184

Showing per page

Implicit a posteriori error estimation using patch recovery techniques

Tamás Horváth, Ferenc Izsák (2012)

Open Mathematics

We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging...

Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels

Jan Brousek, Pavla Fraňková, Petr Vaněk (2016)

Czechoslovak Mathematical Journal

The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by a sparse linear...

Improved flux reconstructions in one dimension

Vlasák, Miloslav, Lamač, Jan (2023)

Programs and Algorithms of Numerical Mathematics

We present an improvement to the direct flux reconstruction technique for equilibrated flux a posteriori error estimates for one-dimensional problems. The verification of the suggested reconstruction is provided by numerical experiments.

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem

Yanlai Chen, Jan S. Hesthaven, Yvon Maday, Jerónimo Rodríguez (2009)

ESAIM: Mathematical Modelling and Numerical Analysis


In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup stability constants is essential. In [Huynh et al., C. R. Acad. Sci. Paris Ser. I Math.345 (2007) 473–478], the authors presented an efficient method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to minimizing a linear functional under a few linear constraints. These constraints...

Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra

Gunar Matthies (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We present families of scalar nonconforming finite elements of arbitrary order r 1 with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order r - 1 form inf-sup stable finite element pairs of order r for the Stokes problem. The well-known elements by Rannacher and Turek are recovered in the case r=1. A numerical comparison between conforming and nonconforming discretisations will be given. Since higher order...

Inner products in covolume and mimetic methods

Kathryn A. Trapp (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact sequence framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This...

Internal finite element approximation in the dual variational method for the biharmonic problem

Ivan Hlaváček, Michal Křížek (1985)

Aplikace matematiky

A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with C 0 -elements. The convergence of the method is proved and an algorithm described.

Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries

Ivan Hlaváček, Michal Křížek (1984)

Aplikace matematiky

Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined. A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation...

Currently displaying 1061 – 1080 of 2184