Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Identification of quasiperiodic processes in the vicinity of the resonance

Fischer, Cyril, Náprstek, Jiří (2023)

Programs and Algorithms of Numerical Mathematics

In nonlinear dynamical systems, strong quasiperiodic beating effects appear due to combination of self-excited and forced vibration. The presence of symmetric or asymmetric beatings indicates an exchange of energy between individual degrees of freedom of the model or by multiple close dominant frequencies. This effect is illustrated by the case of the van der Pol equation in the vicinity of resonance. The approximate analysis of these nonlinear effects uses the harmonic balance method and the multiple...

Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch

Mihua Ma, Hua Zhang, Jianping Cai, Jin Zhou (2013)

Kybernetika

This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where...

Infinite time regular synthesis

B. Piccoli (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we provide a new sufficiency theorem for regular syntheses. The concept of regular synthesis is discussed in [12], where a sufficiency theorem for finite time syntheses is proved. There are interesting examples of optimal syntheses that are very regular, but whose trajectories have time domains not necessarily bounded. The regularity assumptions of the main theorem in [12] are verified by every piecewise smooth feedback control generating extremal trajectories that reach the target...

Introduction to algorithms for molecular simulations

Kramář, Martin (2010)

Programs and Algorithms of Numerical Mathematics

In the first part of the paper we survey some algorithms which describe time evolution of interacting particles in a bounded domain. Applications to macroscale as well as microscale are presented on two examples: motion of planets and collision of two bodies. In the second part of the paper we present solution to stationary Schrödinger equation for simple molecular models.

Invariance of global solutions of the Hamilton-Jacobi equation

Ezequiel Maderna (2002)

Bulletin de la Société Mathématique de France

We show that every global viscosity solution of the Hamilton-Jacobi equation associated with a convex and superlinear Hamiltonian on the cotangent bundle of a closed manifold is necessarily invariant under the identity component of the group of symmetries of the Hamiltonian (we prove that this group is a compact Lie group). In particular, every Lagrangian section invariant under the Hamiltonian flow is also invariant under this group.

Invariant subspaces for grasping internal forces and non-interacting force-motion control in robotic manipulation

Paolo Mercorelli (2012)

Kybernetika

This paper presents a parametrization of a feed-forward control based on structures of subspaces for a non-interacting regulation. With advances in technological development, robotics is increasingly being used in many industrial sectors, including medical applications (e. g., micro-manipulation of internal tissues or laparoscopy). Typical problems in robotics and general mechanisms may be mathematically formalized and analyzed, resulting in outcomes so general that it is possible to speak of structural...

Invariant tracking

Philippe Martin, Pierre Rouchon, Joachim Rudolph (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of invariant output tracking is considered: given a control system admitting a symmetry group G , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of G . Invariant output errors are defined as a set of scalar invariants of G ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required...

Currently displaying 1 – 20 of 27

Page 1 Next