A system of coupled oscillators with magnetic terms: symmetries and integrals of motion.
The velocity field distribution for rigid motions in the Born?s sense applied to Post-Newtonian Relativistic Celestial Mechanics is examined together with its compatibility with the Newtonian distribution.
A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.
Some problems regarding numerical modeling of predicted vibrations excited by railway traffic are discussed. Model formulation in the field of structural mechanics comprises a vehicle, a track (often in a tunnel) and soil. Time consuming computations are needed to update large matrices at every discrete step. At first, a sequential Matlab code is generated. Later on, the formulation is modified to use grid computing, thereby a significant reduction in computational time is expected.
It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...
This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional...
Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.
In this paper we consider the system of Hamiltonian differential equations, which determines small oscillations of a dynamical system with n parameters. We demonstrate that this system determines an affinor structure J on the phase space TRⁿ. If J² = ωI, where ω = ±1,0, the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type. In the Euclidean case (Rⁿ = Eⁿ) we obtain the Hopf bundle and its analogs. The bases of these bundles are, respectively, the projective...