Displaying 281 – 300 of 442

Showing per page

Parabolic perturbations of Hamilton–Jacobi equations

Yakov Sinai (1998)

Fundamenta Mathematicae

We consider a parabolic perturbation of the Hamilton-Jacobi equation where the potential is periodic in space and time. We show that any solution converges to a limit not depending on initial conditions.

Particles, phases, fields

L. Wojtczak, A. Urbaniak-Kucharczyk, I. Zasada, J. Rutkowski (1996)

Banach Center Publications

The physical properties of particles and phasesare considered in connection with their description by means of the deformation of space-time. The analogy between particle trajectories and phase boundaries is discussed. The geometry and its curvature is related to the Clifford algebraic structure whose construction in terms of the theory of deformation leads to the expected solutions for correlation functions referring to spectroscopy and scattering problems. The stochastic nature of space-time is...

Periodic orbits close to elliptic tori and applications to the three-body problem

Massimiliano Berti, Luca Biasco, Enrico Valdinoci (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...

Periodic solutions for second order Hamiltonian systems

Qiongfen Zhang, X. H. Tang (2012)

Applications of Mathematics

By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.

Periodic solutions for second-order Hamiltonian systems with a p -Laplacian

Xianhua Tang, Xingyong Zhang (2010)

Annales UMCS, Mathematica

In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.

Poincaré-Cartan forms in higher order variational calculus on fibred manifolds.

Jaime Muñoz Masqué (1985)

Revista Matemática Iberoamericana

The aim of the present work is to present a geometric formulation of higher order variational problems on arbitrary fibred manifolds. The problems of Engineering and Mathematical Physics whose natural formulation requires the use of second order differential invariants are classic, but it has been the recent advances in the theory of integrable non-linear partial differential equations and the consideration in Geometry of invariants of increasingly higher orders that has highlighted the interest...

Currently displaying 281 – 300 of 442