Displaying 101 – 120 of 442

Showing per page

Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics

Alexandru Oană, Mircea Neagu (2012)

Communications in Mathematics

In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.

Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff

Maria Letizia Bertotti, Sergey V. Bolotin (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as t ± , to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.

Editorial

Olga Krupková (2010)

Communications in Mathematics

Espaces variationnels et mécanique

Joseph Klein (1962)

Annales de l'institut Fourier

Ce travail est essentiellement consacré aux systèmes dynamiques Σ non conservatifs, la force généralisée dépendant à la fois des paramètres de position x α et de vitesse y α . V désignant l’espace-temps de configuration, V l’espace fibré des vecteurs tangents, W celui des directions tangentes à V , on caractérise Σ par son lagrangien homogène L et le tenseur-force S antisymétrique dont le produit contracté par le vecteur vitesse donne le vecteur force généralisé.Dans la première partie, on étudie l’algèbre...

Estimates for multiple stochastic integrals and stochastic Hamilton-Jacobi equations.

Vassili N. Kolokol'tsov, René L. Schilling, Alexei E. Tyukov (2004)

Revista Matemática Iberoamericana

We study stochastic Hamilton-Jacobi-Bellman equations and the corresponding Hamiltonian systems driven by jump-type Lévy processes. The main objective of the present papel is to show existence, uniqueness and a (locally in time) diffeomorphism property of the solution: the solution trajectory of the system is a diffeomorphism as a function of the initial momentum. This result enables us to implement a stochastic version of the classical method of characteristics for the Hamilton-Jacobi equations....

Currently displaying 101 – 120 of 442