Asymptotic behaviour for Schrödinger equations with a quadratic nonlinearity in one-space dimension.
We prove -regularity for the stresses in the Prandtl-Reuss-law. The proof runs via uniform estimates for the Norton-Hoff-approximation.
The nonlinear integro-differential system associated with the penetration of a magnetic field into a substance is considered. The asymptotic behavior as of solutions for two initial-boundary value problems are studied. The problem with non-zero conditions on one side of the lateral boundary is discussed. The problem with homogeneous boundary conditions is studied too. The rates of convergence are given. Results presented show the difference between stabilization characters of solutions of these...
We consider the problem of placing a Dirichlet region made by n small balls of given radius in a given domain subject to a force f in order to minimize the compliance of the configuration. Then we let n tend to infinity and look for the Γ-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.