Displaying 221 – 240 of 584

Showing per page

External approximation of first order variational problems via W-1,p estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of Γ-convergence theory.

Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening

Claudia Comi, Giulio Maier (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution...

Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids

Giulio Maier, Giorgio Novati (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material stability"...

FER/SubDomain : an integrated environment for finite element analysis using object-oriented approach

Zhi-Qiang Feng, Jean-Michel Cros (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

FER/SubDomain: An Integrated Environment for Finite Element Analysis using Object-Oriented Approach

Zhi-Qiang Feng, Jean-Michel Cros (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity

Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider linear elliptic systems which arise in coupled elastic continuum mechanical models. In these systems, the strain tensor εP := sym (P-1∇u) is redefined to include a matrix valued inhomogeneity P(x) which cannot be described by a space dependent fourth order elasticity tensor. Such systems arise naturally in geometrically exact plasticity or in problems with eigenstresses. The tensor field P induces a structural change of the elasticity equations. For such a model the FETI-DP method is...

FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity

Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider linear elliptic systems which arise in coupled elastic continuum mechanical models. In these systems, the strain tensor εP := sym (P-1∇u) is redefined to include a matrix valued inhomogeneity P(x) which cannot be described by a space dependent fourth order elasticity tensor. Such systems arise naturally in geometrically exact plasticity or in problems with eigenstresses. The tensor field P induces a structural change of the elasticity equations. For such a model the FETI-DP method is...

Finite difference scheme for the Willmore flow of graphs

Tomáš Oberhuber (2007)

Kybernetika

In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...

Finite element analysis of a static contact problem with Coulomb friction

Ivan Hlaváček (2000)

Applications of Mathematics

A unilateral contact problem with a variable coefficient of friction is solved by a simplest variant of the finite element technique. The coefficient of friction may depend on the magnitude of the tangential displacement. The existence of an approximate solution and some a priori estimates are proved.

Finite element analysis of free material optimization problem

Jan Mach (2004)

Applications of Mathematics

Free material optimization solves an important problem of structural engineering, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathematical formulation leads to a saddle-point problem. It can be solved numerically by the finite element method. The convergence of the finite element method can be proved if the spaces involved satisfy suitable approximation assumptions. An example of a finite-element discretization is included.

Finite element analysis of sloshing and hydroelastic vibrations under gravity

Alfredo Bermúdez, Rodolfo Rodríguez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with a finite element method to solve fluid-structure interaction problems. More precisely it concerns the numerical computation of harmonic hydroelastic vibrations under gravity. It is based on a displacement formulation for both the fluid and the solid. Gravity effects are included on the free surface of the fluid as well as on the liquid-solid interface. The pressure of the fluid is used as a variable for the theoretical analysis leading to a well posed mixed linear eigenvalue...

Finite element analysis of the Signorini problem in semi-coercive cases

Ivan Hlaváček, Ján Lovíšek (1980)

Aplikace matematiky

The plane Signorini problem is considered in the cases, when there exist non-trivial rigid admissible displacements. The existence and uniqueness of the solution and the convergence of piecewise linear finite element approximations is discussed.

Currently displaying 221 – 240 of 584