Displaying 81 – 100 of 312

Showing per page

Finite element approximations of a glaciology problem

Sum S. Chow, Graham F. Carey, Michael L. Anderson (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study a model problem describing the movement of a glacier under Glen’s flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and...

Finite element approximations of a glaciology problem

Sum S. Chow, Graham F. Carey, Michael L. Anderson (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study a model problem describing the movement of a glacier under Glen's flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Fokker-Planck equation in bounded domain

Laurent Chupin (2010)

Annales de l’institut Fourier

We study the existence and the uniqueness of a solution  ϕ to the linear Fokker-Planck equation - Δ ϕ + div ( ϕ F ) = f in a bounded domain of  d when F is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.

Free-energy-dissipative schemes for the Oldroyd-B model

Sébastien Boyaval, Tony Lelièvre, Claude Mangoubi (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-Newtonian...

Generalized lubrification models blow-up and global existence result.

J. Emile Rakotoson, J. Michel Rakotoson, Cédric Verbeke (2005)

RACSAM

We study a general mathematical model linked with various physical models. Especially, we focus on those models established by King or Spencer-Davis-Voorhees related to thin films extending the lubrication model studied by Bernis-Friedman. According to the initial data, we prove that, either, blow up or global existence can be obtained.

Geometrodynamics of some non-relativistic incompressible fluids.

Agostino Pràstaro (1979)

Stochastica

In some previous papers [1, 2] we proposed a geometric formulation of continuum mechanics, where a continuous body is seen as a suitable differentiable fiber bundle C on the Galilean space-time M, beside a differential equation of order k, Ek(C), on C and the assignement of a frame Psi on M. This approach allowed us to treat continuum mechanics as a unitary field theory and to consider constitutive and dynamical properties in a more natural way. Further, the particular intrinsic geometrical framework...

Global Attractor for a Fourth-Order Parabolic Equation Modeling Epitaxial Thin Film Growth

Ning Duan, Xiaopeng Zhao (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

This paper is concerned with a fourth-order parabolic equation which models epitaxial growth of nanoscale thin films. Based on the regularity estimates for semigroups and the classical existence theorem of global attractors, we prove that the fourth order parabolic equation possesses a global attractor in a subspace of H², which attracts all the bounded sets of H² in the H²-norm.

Currently displaying 81 – 100 of 312