Displaying 21 – 40 of 58

Showing per page

Generalized Gaudin models and Riccatians

Aleksander Ushveridze (1996)

Banach Center Publications

The systems of differential equations whose solutions exactly coincide with Bethe ansatz solutions for generalized Gaudin models are constructed. These equations are called the generalized spectral ( 1 ) Riccati equations, because the simplest equation of this class has a standard Riccatian form. The general form of these equations is R n i [ z 1 ( λ ) , . . . , z r ( λ ) ] = c n i ( λ ) , i=1,..., r, where R n i denote some homogeneous polynomials of degrees n i constructed from functional variables z i ( λ ) and their derivatives. It is assumed that d e g k z i ( λ ) = k + 1 . The problem...

Generalized hermite polynomials obtained by embeddings of the q-Heisenberg algebra

Joachim Seifert (1997)

Banach Center Publications

Several ways to embed q-deformed versions of the Heisenberg algebra into the classical algebra itself are presented. By combination of those embeddings it becomes possible to transform between q-phase-space and q-oscillator realizations of the q-Heisenberg algebra. Using these embeddings the corresponding Schrödinger equation can be expressed by various difference equations. The solutions for two physically relevant cases are found and expressed as Stieltjes Wigert polynomials.

Generalized homogeneous, prelattice and MV-effect algebras

Zdena Riečanová, Ivica Marinová (2005)

Kybernetika

We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra P are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra P is a union of generalized MV-effect algebras and...

Generalized Hurwitz maps of the type S × V → W, anti-involutions, and quantum braided Clifford algebras

Julian Ławrynowicz, Jakub Rembieliński, Francesco Succi (1996)

Banach Center Publications

The notion of a J 3 -triple is studied in connection with a geometrical approach to the generalized Hurwitz problem for quadratic or bilinear forms. Some properties are obtained, generalizing those derived earlier by the present authors for the Hurwitz maps S × V → V. In particular, the dependence of each scalar product involved on the symmetry or antisymmetry is discussed as well as the configurations depending on various choices of the metric tensors of scalar products of the basis elements. Then...

Generalized q-deformed Gaussian random variables

Marek Bożejko, Hiroaki Yoshida (2006)

Banach Center Publications

We produce generalized q-Gaussian random variables which have two parameters of deformation. One of them is, of course, q as for the usual q-deformation. We also investigate the corresponding Wick formulas, which will be described by some joint statistics on pair partitions.

Generating series and asymptotics of classical spin networks

Francesco Costantino, Julien Marché (2015)

Journal of the European Mathematical Society

We study classical spin networks with group SU 2 . In the first part, using Gaussian integrals, we compute their generating series in the case where the edges are equipped with holonomies; this generalizes Westbury’s formula. In the second part, we use an integral formula for the square of the spin network and perform stationary phase approximation under some non-degeneracy hypothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going to infinity.

Geodesics and curvature of semidirect product groups

Vizman, Cornelia (2001)

Proceedings of the 20th Winter School "Geometry and Physics"

Summary: Geodesics and curvature of semidirect product groups with right invariant metrics are determined. In the special case of an isometric semidirect product, the curvature is shown to be the sum of the curvature of the two groups. A series of examples, like the magnetic extension of a group, are then considered.

Currently displaying 21 – 40 of 58