The Cauchy problem for coupled Yang-Mills and scalar fields in the Lorentz gauge
Using the Clifford bundle formalism we show that Frenet equations of classical differential geometry or its spinor version are the appropriate equations of motion for a classical spinning particle. We show that particular values of the curvatures appearing in Darboux bivector of the spinor form of Frenet equations produce a "classical" Dirac-Hestenes equation. Using the concept of multivector Lagrangians and Hamiltonians we provide a Lagrangian and Hamiltonian approach for our theory which then...
The most elegant definition of singularities in general relativity as b-boundary points, when applied to the closed Friedman world model, leads to the disastrous situation: both the initial and final singularities form the single point of the b-boundary which is not Hausdorff separated from the rest of space-time. We apply Alain Connes' method of non-commutative geometry, defined in terms of a C*-algebra, to this case. It turns out that both the initial and final singularities can be analysed as...
We define suitable Sobolev topologies on the space of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.
Nowadays, the Coupled Cluster (CC) method is the probably most widely used high precision method for the solution of the main equation of electronic structure calculation, the stationary electronic Schrödinger equation. Traditionally, the equations of CC are formulated as a nonlinear approximation of a Galerkin solution of the electronic Schrödinger equation, i.e. within a given discrete subspace. Unfortunately, this concept prohibits the direct application of concepts of nonlinear numerical analysis...
We determine the coribbon structures of some finite dimensional braided Hopf algebras generated by 2×2-matrix coalgebras constructed by S. Suzuki. As a consequence, we see that such a Hopf algebra has a coribbon structure if and only if it is of Kac-Paljutkin type.