Introduction aux méthodes euclidiennes en théorie quantique des champs
We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane . We also prove an estimate giving some intuition to what may happen in dimensions.
We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of...
This talk is concerned with the Kolmogorov-Arnold-Moser (KAM) theorem in Gevrey classes for analytic hamiltonians, the effective stability around the corresponding KAM tori, and the semi-classical asymptotics for Schrödinger operators with exponentially small error terms. Given a real analytic Hamiltonian close to a completely integrable one and a suitable Cantor set defined by a Diophantine condition, we find a family , of KAM invariant tori of with frequencies which is Gevrey smooth with...
Les équations de Dirac-Fock sont l’analogue relativiste des équations de Hartree-Fock. Elles sont utilisées dans les calculs numériques de la chimie quantique, et donnent des résultats sur les électrons dans les couches profondes des atomes lourds. Ces résultats sont en très bon accord avec les données expérimentales. Par une méthode variationnelle, nous montrons l’existence d’une infinité de solutions des équations de Dirac-Fock “sans projecteur", pour des systèmes coulombiens d’électrons dans...
Following Eden and Foias we obtain a matrix version of a generalised Sobolev inequality in one dimension. This allows us to improve on the known estimates of best constants in Lieb–Thirring inequalities for the sum of the negative eigenvalues for multidimensional Schrödinger operators.
We give the definitions of exact and approximate controllability for linear and nonlinear Schrödinger equations, review fundamental criteria for controllability and revisit a classical “No-go” result for evolution equations due to Ball, Marsden and Slemrod. In Section 2 we prove corresponding results on non-controllability for the linear Schrödinger equation and distributed additive control, and we show that the Hartree equation of quantum chemistry with bilinear control is not controllable...