Displaying 281 – 300 of 670

Showing per page

Mesures limites pour l’équation de Helmholtz dans le cas non captif

Jean-François Bony (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

Cet article est consacré à l’étude des mesures limites associées à la solution de l’équation de Helmholtz avec un terme source se concentrant en un point. Le potentiel est supposé C et l’opérateur non-captif. La solution de l’équation de Schrödinger semi-classique s’écrit alors micro-localement comme somme finie de distributions lagrangiennes. Sous une hypothèse géométrique, qui généralise l’hypothèse du viriel, on en déduit que la mesure limite existe et qu’elle vérifie des propriétés standard....

Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari

Silvia Cingolani (2001)

Bollettino dell'Unione Matematica Italiana

In the present paper we survey some recents results concerning existence of semiclassical standing waves solutions for nonlinear Schrödinger equations. Furthermore, from Maxwell's equations we derive a nonlinear Schrödinger equation which represents a model of propagation of an electromagnetic field in optical waveguides.

New method for computation of discrete spectrum of radical Schrödinger operator

Ivan Úlehla, Miloslav Havlíček (1980)

Aplikace matematiky

A new method for computation of eigenvalues of the radial Schrödinger operator - d 2 / d x 2 + v ( x ) , x 0 is presented. The potential v ( x ) is assumed to behave as x - 2 + ϵ if x 0 + and as x - 2 - ϵ if x + , ϵ 0 . The Schrödinger equation is transformed to a non-linear differential equation of the first order for a function z ( x , ) . It is shown that the eigenvalues are the discontinuity points of the function z ( , ) . Moreover, it is shown how to obtain an arbitrarily accurate approximation of eigenvalues. The method seems to be much more economical in comparison...

New method to solve certain differential equations

Kazimierz Rajchel, Jerzy Szczęsny (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

A new method to solve stationary one-dimensional Schroedinger equation is investigated. Solutions are described by means of representation of circles with multiple winding number. The results are demonstrated using the well-known analytical solutions of the Schroedinger equation.

Non-differentiability of Feynman paths

Pat Muldowney (2025)

Czechoslovak Mathematical Journal

A well-known mathematical property of the particle paths of Brownian motion is that such paths are, with probability one, everywhere continuous and nowhere differentiable. R. Feynman (1965) and elsewhere asserted without proof that an analogous property holds for the sample paths (or possible paths) of a non-relativistic quantum mechanical particle to which a conservative force is applied. Using the non-absolute integration theory of Kurzweil and Henstock, this article provides an introductory proof...

Nonlinear Dirac equations.

Ng, Wei Khim, Parwani, Rajesh R. (2009)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Nonlinear Schrödinger equation on four-dimensional compact manifolds

Patrick Gérard, Vittoria Pierfelice (2010)

Bulletin de la Société Mathématique de France

We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy...

Currently displaying 281 – 300 of 670