On diamagnetism and de Haas-van Alphen effect
We consider a Schrödinger-type differential expression , where is a -bounded Hermitian connection on a Hermitian vector bundle of bounded geometry over a manifold of bounded geometry with metric and positive -bounded measure , and is a locally integrable section of the bundle of endomorphisms of . We give a sufficient condition for -sectoriality of a realization of in . In the proof we use generalized Kato’s inequality as well as a result on the positivity of satisfying the...
We discuss possible topological configurations of nodal sets, in particular the number of their components, for spherical harmonics on . We also construct a solution of the equation in that has only two nodal domains. This equation arises in the study of high energy eigenfunctions.
We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.
We study the spectral stability of solitary wave solutions to the nonlinear Dirac equation in one dimension. We focus on the Dirac equation with cubic nonlinearity, known as the Soler model in (1+1) dimensions and also as the massive Gross-Neveu model. Presented numerical computations of the spectrum of linearization at a solitary wave show that the solitary waves are spectrally stable. We corroborate our results by finding explicit expressions for...
The present work is a mathematical analysis of two algorithms, namely the Roothaan and the level-shifting algorithms, commonly used in practice to solve the Hartree-Fock equations. The level-shifting algorithm is proved to be well-posed and to converge provided the shift parameter is large enough. On the contrary, cases when the Roothaan algorithm is not well defined or fails in converging are exhibited. These mathematical results are confronted to numerical experiments performed by chemists.
We consider the Laplace operator in a thin tube of with a Dirichlet condition on its boundary. We study asymptotically the spectrum of such an operator as the thickness of the tube's cross section goes to zero. In particular we analyse how the energy levels depend simultaneously on the curvature of the tube's central axis and on the rotation of the cross section with respect to the Frenet frame. The main argument is a Γ-convergence theorem for a suitable sequence of quadratic energies.
This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes...