Loading [MathJax]/extensions/MathZoom.js
Displaying 81 –
100 of
426
The primary objective of this work is to develop coarse-graining
schemes for stochastic many-body microscopic models and quantify their
effectiveness in terms of a priori and a posteriori error analysis. In
this paper we focus on stochastic lattice systems of
interacting particles at equilibrium.
The proposed algorithms are derived from an initial coarse-grained
approximation that is directly computable by Monte Carlo simulations,
and the corresponding numerical error is calculated using the...
The modelling and the numerical resolution of the electrical charging of a
spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions.
We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.
We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...
In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
We consider a simple random walk of length N, denoted by (Si)i∈{1, …, N}, and we define (wi)i≥1 a sequence of centered i.i.d. random variables. For K∈ℕ we define ((γi−K, …, γiK))i≥1 an i.i.d sequence of random vectors. We set β∈ℝ, λ≥0 and h≥0, and transform the measure on the set of random walk trajectories with the hamiltonian λ∑i=1N(wi+h)sign(Si)+β∑j=−KK∑i=1Nγij1{Si=j}. This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer of width 2K around an interface...
We analyze the charge and spin distributions induced in an interacting electron system confined inside a semiconductor quantum wire with spin orbit interaction in the presence of an external magnetic field. The wire, assumed to be infinitely long, is obtained through lateral confinement in three different materials: GaAs, InAs, and InSb. The spin-orbit coupling, linear in the electron momentum is of both Rashba and Dresselhaus type. Within the Hartree-Fock approximation the many-body Hamiltonian...
Currently displaying 81 –
100 of
426