Page 1

Displaying 1 – 16 of 16

Showing per page

Néel and Cross-Tie wall energies for planar micromagnetic configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations


We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

New Results in Velocity Averaging

François Golse (2001/2002)

Séminaire Équations aux dérivées partielles

This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for L 1 functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.

No production of entropy in the Euler fluid

R. F. Streater (2004)

Banach Center Publications

We derive the Euler equations as the hydrodynamic limit of a stochastic model of a hard-sphere gas. We show that the system does not produce entropy.

Nonlinear boundary value problems describing mobile carrier transport in semiconductor devices

E. Z. Borevich, V. M. Chistyakov (2001)

Applications of Mathematics

The present paper describes mobile carrier transport in semiconductor devices with constant densities of ionized impurities. For this purpose we use one-dimensional partial differential equations. The work gives the proofs of global existence of solutions of systems of such kind, their bifurcations and their stability under the corresponding assumptions.

Nonlinear models for laser-plasma interaction

Thierry Colin, Mathieu Colin, Guy Métivier (2006/2007)

Séminaire Équations aux dérivées partielles

In this paper, we present a nonlinear model for laser-plasma interaction describing the Raman amplification. This system is a quasilinear coupling of several Zakharov systems. We handle the Cauchy problem and we give some well-posedness and ill-posedness result for some subsystems.

Numerical analysis of nonlinear model of excited carrier decay

Natalija Tumanova, Raimondas Čiegis, Mečislavas Meilūnas (2013)

Open Mathematics

This paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved....

Numerical approximation of Knudsen layer for the Euler-Poisson system

Fréderique Charles, Nicolas Vauchelet, Christophe Besse, Thierry Goudon, Ingrid Lacroix–Violet, Jean-Paul Dudon, Laurent Navoret (2011)

ESAIM: Proceedings

In this work, we consider the computation of the boundary conditions for the linearized Euler–Poisson derived from the BGK kinetic model in the small mean free path regime. Boundary layers are generated from the fact that the incoming kinetic flux might be far from the thermodynamical equilibrium. In [2], the authors propose a method to compute numerically the boundary conditions in the hydrodynamic limit relying on an analysis of the boundary layers....

Numerical approximation of self-consistent Vlasov models for low-frequency electromagnetic phenomena

Nicolas Besse, Norbert J. mauser, Eric Sonnendrücker (2007)

International Journal of Applied Mathematics and Computer Science

We present a new numerical method to solve the Vlasov-Darwin and Vlasov-Poisswell systems which are approximations of the Vlasov-Maxwell equation in the asymptotic limit of the infinite speed of light. These systems model low-frequency electromagnetic phenomena in plasmas, and thus "light waves" are somewhat supressed, which in turn allows thenumerical discretization to dispense with the Courant-Friedrichs-Lewy condition on the time step. We construct a numerical scheme based on semi-Lagrangian...

Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

Rémi Carles, Bijan Mohammadi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...

Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

Rémi Carles, Bijan Mohammadi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...

Numerical study of the systematic error in Monte Carlo schemes for semiconductors

Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper studies the convergence behavior of Monte Carlo schemes for semiconductors. A detailed analysis of the systematic error with respect to numerical parameters is performed. Different sources of systematic error are pointed out and illustrated in a spatially one-dimensional test case. The error with respect to the number of simulation particles occurs during the calculation of the internal electric field. The time step error, which is related to the splitting of transport and electric field...

Currently displaying 1 – 16 of 16

Page 1