The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study a two-dimensional model for micromagnetics, which consists in an energy functional over -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....
We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....
This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.
We derive the Euler equations as the hydrodynamic limit of a stochastic model of a hard-sphere gas. We show that the system does not produce entropy.
The present paper describes mobile carrier transport in semiconductor devices with constant densities of ionized impurities. For this purpose we use one-dimensional partial differential equations. The work gives the proofs of global existence of solutions of systems of such kind, their bifurcations and their stability under the corresponding assumptions.
In this paper, we present a nonlinear model for laser-plasma interaction describing the Raman amplification. This system is a quasilinear coupling of several Zakharov systems. We handle the Cauchy problem and we give some well-posedness and ill-posedness result for some subsystems.
This paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved....
In this work, we consider the computation of the boundary conditions for the linearized
Euler–Poisson derived from the BGK kinetic model in the small mean free path regime.
Boundary layers are generated from the fact that the incoming kinetic flux might be far
from the thermodynamical equilibrium. In [2], the authors propose a method to compute
numerically the boundary conditions in the hydrodynamic limit relying on an analysis of
the boundary layers....
We present a new numerical method to solve the Vlasov-Darwin and Vlasov-Poisswell systems which are approximations of the Vlasov-Maxwell equation in the asymptotic limit of the infinite speed of light. These systems model low-frequency electromagnetic phenomena in plasmas, and thus "light waves" are somewhat supressed, which in turn allows thenumerical discretization to dispense with the Courant-Friedrichs-Lewy condition on the time step. We construct a numerical scheme based on semi-Lagrangian...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
The paper studies the convergence behavior of
Monte Carlo schemes for semiconductors.
A detailed analysis of the systematic error
with respect to numerical parameters is performed.
Different sources of systematic error are pointed out and
illustrated in a spatially one-dimensional test case.
The error with respect to the number of simulation particles
occurs during the calculation of the internal electric field.
The time step error, which is related to the splitting of transport and
electric field...
Currently displaying 1 –
16 of
16