Page 1

Displaying 1 – 9 of 9

Showing per page

Quantum Euler-Poisson systems: Existence of stationary states

Ansgar Jüngel, Hailiang Li (2004)

Archivum Mathematicum

A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron...

Quantum graph spectra of a graphyne structure

Ngoc T. Do, Peter Kuchment (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.

Quenched limits for transient, ballistic, sub-gaussian one-dimensional random walk in random environment

Jonathon Peterson (2009)

Annales de l'I.H.P. Probabilités et statistiques

We consider a nearest-neighbor, one-dimensional random walk {Xn}n≥0 in a random i.i.d. environment, in the regime where the walk is transient with speed vP>0 and there exists an s∈(1, 2) such that the annealed law of n−1/s(Xn−nvP) converges to a stable law of parameter s. Under the quenched law (i.e., conditioned on the environment), we show that no limit laws are possible. In particular we show that there exist sequences {tk} and {tk'} depending on the environment only, such that a quenched...

Currently displaying 1 – 9 of 9

Page 1