Page 1 Next

Displaying 1 – 20 of 46

Showing per page

Safety regulations and fuzzy-logic control to nuclear reactors.

Da Ruan (2000)

Mathware and Soft Computing

We present an R&D project on fuzzy-logic control applicatios tor the Belgian Nuclear Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK·CEN). The project started in 1995 and aimed at investigating the added value of fuzzy logic control for nuclear reactors. We first review some relevant literature on fuzzy logic control in nuclear reactors, then present the state-of-the-art of the BR1 project, with an understanding of the safety requirements for this real fuzzy-logic control application...

Scaling limit of the random walk among random traps on ℤd

Jean-Christophe Mourrat (2011)

Annales de l'I.H.P. Probabilités et statistiques

Attributing a positive value τx to each x∈ℤd, we investigate a nearest-neighbour random walk which is reversible for the measure with weights (τx), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that d≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof by expressing the random walk as the...

Schrödinger operator with magnetic field in domain with corners

Virginie Bonnaillie Noël (2005)

Journées Équations aux dérivées partielles

We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.

Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle

Fanghua Lin, Ping Zhang (2004/2005)

Séminaire Équations aux dérivées partielles

In this paper, we study the semiclassical limit of the cubic nonlinear Schrödinger equation with the Neumann boundary condition in an exterior domain. We prove that before the formation of singularities in the limit system, the quantum density and the quantum momentum converge to the unique solution of the compressible Euler equation with the slip boundary condition as the scaling parameter approaches 0 .

Simplified models of quantum fluids in nuclear physics

Bernard Ducomet (2001)

Mathematica Bohemica

We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods.

Singularities, defects and chaos in organized fluids

Roland Ribotta, Ahmed Belaidi, Alain Joets (2003)

Banach Center Publications

The singularities occurring in any sort of ordering are known in physics as defects. In an organized fluid defects may occur both at microscopic (molecular) and at macroscopic scales when hydrodynamic ordered structures are developed. Such a fluid system serves as a model for the study of the evolution towards a strong disorder (chaos) and it is found that the singularities play an important role in the nature of the chaos. Moreover both types of defects become coupled at the onset of turbulence....

Slowdown estimates and central limit theorem for random walks in random environment

Alain-Sol Sznitman (2000)

Journal of the European Mathematical Society

This work is concerned with asymptotic properties of multi-dimensional random walks in random environment. Under Kalikow’s condition, we show a central limit theorem for random walks in random environment on d , when d > 2 . We also derive tail estimates on the probability of slowdowns. These latter estimates are of special interest due to the natural interplay between slowdowns and the presence of traps in the medium. The tail behavior of the renewal time constructed in [25] plays an important role in...

Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

David J. Knezevic, Endre Süli (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to + along the boundary D of the computational domain D . Using a symmetrization...

Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

David J. Knezevic, Endre Süli (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along the boundary ∂D of the computational domain D. Using a symmetrization...

Spectral statistics for random Schrödinger operators in the localized regime

François Germinet, Frédéric Klopp (2014)

Journal of the European Mathematical Society

We study various statistics related to the eigenvalues and eigenfunctions of random Hamiltonians in the localized regime. Consider a random Hamiltonian at an energy E in the localized phase. Assume the density of states function is not too flat near E . Restrict it to some large cube Λ . Consider now I Λ , a small energy interval centered at E that asymptotically contains infintely many eigenvalues when the volume of the cube Λ grows to infinity. We prove that, with probability one in the large volume...

Splitting d'opérateur pour l'équation de transport neutronique en géométrie bidimensionnelle plane

Samir Akesbi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this work is to introduce and to analyze new algorithms for solving the transport neutronique equation in 2D geometry. These algorithms present the duplicate favors to be, on the one hand faster than some classic algorithms and easily to be implemented and naturally deviced for parallelisation on the other hand. They are based on a splitting of the collision operator holding amount of caracteristics of the transport operator. Some numerical results are given at the end of this work. ...

Currently displaying 1 – 20 of 46

Page 1 Next