Algoritmi di ottimizzazione globale
Public inoculation centers are examples of facilities providing service to customers whose demand is elastic to travel and waiting time. That is, people will not travel too far, or stay in line for too long to obtain the service. The goal, when planning such services, is to maximize the demand they attract, by locating centers and staffing them so as to reduce customers’ travel time and time spent in queue. In the case of inoculation centers, the goal is to maximize the people that travel to the...
Public inoculation centers are examples of facilities providing service to customers whose demand is elastic to travel and waiting time. That is, people will not travel too far, or stay in line for too long to obtain the service. The goal, when planning such services, is to maximize the demand they attract, by locating centers and staffing them so as to reduce customers' travel time and time spent in queue. In the case of inoculation centers, the goal is to maximize the people that travel to the...
A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the present strategy...
We employ the active set strategy which was proposed by Facchinei for solving large scale bound constrained optimization problems. As the special structure of the bound constrained problem, a simple rule is used for updating the multipliers. Numerical results show that the active set identification strategy is practical and efficient.
The paper presents an approach to improve the efficiency of some two-level optimization algorithms by their implementation in parallel MIMD multiprocessor systems. Diagonal decomposition dynamic programming and parametric optimization methods are considered, and some concepts of their parallelization are discussed. Results regarding the implementation of computations in a parallel multitransputer system are presented. For the analysed problems, the obtained values of speedup are close to the theoretical...
Trust region methods are a class of effective iterative schemes in numerical optimization. In this paper, a new improved nonmonotone adaptive trust region method for solving unconstrained optimization problems is proposed. We construct an approximate model where the approximation to Hessian matrix is updated by the scaled memoryless BFGS update formula, and incorporate a nonmonotone technique with the new proposed adaptive trust region radius. The new ratio to adjusting the next trust region radius...
The smoothing-type algorithm is a powerful tool for solving the second-order cone programming (SOCP), which is in general designed based on a monotone line search. In this paper, we propose a smoothing-type algorithm for solving the SOCP with a non-monotone line search. By using the theory of Euclidean Jordan algebras, we prove that the proposed algorithm is globally and locally quadratically convergent under suitable assumptions. The preliminary numerical results are also reported which indicate...
First results concerning important theoretical properties of the dual ISOPE (Integrated System Optimization and Parameter Estimation) algorithm are presented. The algorithm applies to on-line set-point optimization in control structures with uncertainty in process models and disturbance estimates, as well as to difficult nonlinear constrained optimization problems. Properties of the conditioned (dualized) set of problem constraints are investigated, showing its structure and feasibility properties...
We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the modeling of competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of a certain multifunction has to be verified in order to justify using M-stationarity conditions. Third,...
We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the modeling of competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of a certain multifunction has to be verified in order...