Page 1

Displaying 1 – 5 of 5

Showing per page

Infinite asymptotic games

Christian Rosendal (2009)

Annales de l’institut Fourier

We study infinite asymptotic games in Banach spaces with a finite-dimensional decomposition (F.D.D.) and prove that analytic games are determined by characterising precisely the conditions for the players to have winning strategies. These results are applied to characterise spaces embeddable into p sums of finite dimensional spaces, extending results of Odell and Schlumprecht, and to study various notions of homogeneity of bases and Banach spaces. The results are related to questions of rapidity...

Interval valued bimatrix games

Milan Hladík (2010)

Kybernetika

Payoffs in (bimatrix) games are usually not known precisely, but it is often possible to determine lower and upper bounds on payoffs. Such interval valued bimatrix games are considered in this paper. There are many questions arising in this context. First, we discuss the problem of existence of an equilibrium being common for all instances of interval values. We show that this property is equivalent to solvability of a certain linear mixed integer system of equations and inequalities. Second, we...

Currently displaying 1 – 5 of 5

Page 1