Loading [MathJax]/extensions/MathZoom.js
Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.
We use Ramseyan partition relations to characterize:
∙ the classical covering property of Hurewicz;
∙ the covering property of Gerlits and Nagy;
∙ the combinatorial cardinal numbers and add(ℳ ).
Let X be a -space. In [9] we showed that has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent:
1. has countable fan tightness and the Reznichenko property.
2....
Currently displaying 1 –
3 of
3