Control of networks of Euler-Bernoulli beams
We consider the exact controllability problem by boundary action of hyperbolic systems of networks of Euler-Bernoulli beams. Using the multiplier method and Ingham's inequality, we give sufficient conditions insuring the exact controllability for all time. These conditions are related to the spectral behaviour of the associated operator and are sufficiently concrete in order to be able to check them on particular networks as illustrated on simple examples.
The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.
The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in Lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.
In the present paper, we consider the class of control systems which are induced by the action of a semi-simple Lie group on a manifold, and we give a sufficient condition which insures that such a system can be steered from any initial state to any final state by an admissible control. The class of systems considered contains, in particular, essentially all the bilinear systems. Our condition is semi-algebraic but unlike the celebrated Kalman criterion for linear systems, it is not necessary. In...
We classify the left-invariant control affine systems evolving on the orthogonal group . The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
In this work, we examine the exact controllability of the solution of a linear elasticity system, with evolutive Ventcel's conditions, (see [3]), in a bounded domain of R3. We use the Hilbert uniqueness methode, (H.U.M), of J.L.Lions, (see [9]); some multipliers are defined on the boundary; the curvature tensor (see [6]), appears when computing some boundary integrals. This work can be inserted in the framework of the study of the exact controllability and stabilisation of various problems with...
We consider the exact controllability and stabilization of Maxwell equation by using results on the propagation of singularities of the electromagnetic field. We will assume geometrical control condition and use techniques of the work of Bardos et al. on the wave equation. The problem of internal stabilization will be treated with more attention because the condition divE=0 is not preserved by the system of Maxwell with Ohm's law.