Displaying 61 – 80 of 110

Showing per page

On the structure at infinity of linear delay systems with application to the disturbance decoupling problem

Rabah Rabah, Michel Malabre (1999)

Kybernetika

The disturbance decoupling problem is studied for linear delay systems. The structural approach is used to design a decoupling precompensator. The realization of the given precompensator by static state feedback is studied. Using various structural and geometric tools, a detailed description of the feedback is given, in particular, derivative of the delayed disturbance can be needed in the realization of the precompensator.

Optimal approximation simulation and analog realization of the fundamental fractional order transfer function

Abdelbaki Djouambi, Abdelfatah Charef, Alina Voda besancon (2007)

International Journal of Applied Mathematics and Computer Science

This paper provides an optimal approximation of the fundamental linear fractional order transfer function using a distribution of the relaxation time function. Simple methods, useful in systems and control theories, which can be used to approximate the irrational transfer function of a class of fractional systems fora given frequency band by a rational function are presented. The optimal parameters of the approximated model are obtained by minimizing simultaneously the gain and the phase error between...

Optimal decentralized control design with disturbance decoupling

Petros G. Voulgaris (2002)

Kybernetika

In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal 1 sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows.

Optimal multivariable PID regulator

Jiří Mošna, Pavel Pešek (2000)

Kybernetika

A continuous version of optimal LQG design under presence of Wiener disturbances is solved for MIMO controlled plant. Traditional design tools fail to solve this problem due to unstability of the augmented plant. A class of all optimality criteria, which guarantee existence of an asymptotical solution, is defined using a plant deviation model. This class is utilized in design of an optimal state and an error feedback regulator which is presented here. The resultant optimal error regulator is interpreted...

Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization

Da-Ke Gu, Da-Wei Zhang (2020)

Kybernetika

This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile,...

Receding-horizon control of constrained uncertain linear systems with disturbances

Luigi Chisci, Paola Falugi, Giovanni Zappa (2002)

Kybernetika

The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest...

Robust controller design for linear polytopic systems

Vojtech Veselý (2006)

Kybernetika

The paper addresses the problem of the robust output feedback controller design with a guaranteed cost and parameter dependent Lyapunov function for linear continuous time polytopic systems. Two design methods based on improved robust stability conditions are proposed. Numerical examples are given to illustrate the effectiveness of the proposed methods. The obtained results are compared with other three design procedures.

Robust coordination control of switching multi-agent systems via output regulation approach

Xiaoli Wang, Fengling Han (2011)

Kybernetika

In this paper, the distributed output regulation problem of uncertain multi-agent systems with switching interconnection topologies is considered. All the agents will track or reject the signals generated by an exosystem (or an active leader). A systematic distributed design approach is proposed to handle output regulation via dynamic output feedback with the help of canonical internal model. With common solutions of regulator equations and Lyapunov functions, the distributed robust output regulation...

Robust decentralized H 2 control of multi-channel descriptor systems with norm-bounded parametric uncertainties

Weihua Gui, Ning Chen, Guisheng Zhai (2009)

Kybernetika

This paper considers a robust decentralized H 2 control problem for multi-channel descriptor systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in both the system and control input matrices. Our interest is focused on dynamic output feedback. A necessary and sufficient condition for an uncertain multi-channel descriptor system to be robustly stabilizable with a specified H 2 norm is derived in terms of a strict nonlinear matrix inequality (NMI), that is, an NMI with...

Currently displaying 61 – 80 of 110