Loading [MathJax]/extensions/MathZoom.js
Dual-mode fuzzy dynamic matrix control (fuzzy DMC-FDMC) algorithms with guaranteed nominal stability for constrained nonlinear plants are presented. The algorithms join the advantages of fuzzy Takagi-Sugeno modeling and the predictive dual-mode approach in a computationally efficient version. Thus, they can bring an improvement in control quality compared with predictive controllers based on linear models and, at the same time, control performance similar to that obtained using more demanding algorithms...
This paper describes structured neural models and a computationally efficient (suboptimal) nonlinear Model Predictive Control (MPC) algorithm based on such models. The structured neural model has the ability to make future predictions of the process without being used recursively. Thanks to the nature of the model, the prediction error is not propagated. This is particularly important in the case of noise and underparameterisation. Structured models have much better long-range prediction accuracy...
We propose an efficient numerical algorithm for relative error model reduction based on balanced stochastic truncation. The method uses full-rank factors of the Gramians to be balanced versus each other and exploits the fact that for large-scale systems these Gramians are often of low numerical rank. We use the easy-to-parallelize sign function method as the major computational tool in determining these full-rank factors and demonstrate the numerical performance of the suggested implementation of...
Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to...
This paper introduces a complete parametric approach for solving the eigenstructure assignment problem using proportional-plus-derivative feedback for second-order linear control systems. In this work, necessary and sufficient conditions that ensure the solvability for the second-order system are derived. A parametric solution to the feedback gain matrix is introduced that describes the available degrees of freedom offered by the proportional-plus-derivative feedback in selecting the associated...
A new problem of decreasing the degree of the closed-loop characteristic polynomial of the 2D Roesser model by a suitable choice of state feedbacks is formulated. Sufficient conditions are established under which it is possible to choose state feedbacks such that the non-zero closed-loop characteristic polynomial has degree zero. A procedure for computation of the feedback gain matrices is presented and illustrated by a numerical example.
The paper presents an improved method for 1-24 hours load forecasting in the power system, integrating and combining different neural forecasting results by an ensemble system. We will integrate the results of partial predictions made by three solutions, out of which one relies on a multilayer perceptron and two others on self-organizing networks of the competitive type. As the expert system we will apply different integration methods: simple averaging, SVD based weighted averaging, principal component...
A new direct method is presented which reduces a given high-order representation of a control system with delays to a first-order form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description (PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form is Fuhrmann's strict system equivalence. This type of system equivalence leaves the transfer function and other relevant structural...
The aim of this paper is to prove that a control affine system on a manifold is equivalent by diffeomorphism
to a linear system on a Lie group or a homogeneous space if and only if the vector
fields of the system are complete and generate a finite dimensional
Lie algebra.
A vector field on a connected Lie group is linear if its flow is a one parameter
group of automorphisms. An affine vector field is obtained by adding a
left invariant one. Its projection on a homogeneous space, whenever it exists,...
We consider a class of variational
problems for differential inclusions, related to the
control of wild fires. The area burned by the fire at time t> 0
is modelled as the reachable set for
a differential inclusion ∈F(x), starting from
an initial set R0. To block the fire, a barrier can be constructed
progressively in time. For each t> 0, the portion of the wall constructed
within time t is described by a rectifiable set
γ(t) ⊂. In this paper
we show that the search
for blocking strategies...
Currently displaying 1 –
20 of
107