Loading [MathJax]/extensions/MathZoom.js
Displaying 741 –
760 of
1698
The aim of this paper is to study regional gradient observability for a diffusion system and the reconstruction of the state gradient without the knowledge of the state. First, we give definitions and characterizations of these new concepts and establish necessary conditions for the sensor structure in order to obtain regional gradient observability. We also explore an approach which allows for a regional gradient reconstruction. The developed method is original and leads to a numerical algorithm...
Graphical models provide an undirected graph representation of relations between the components of a random vector. In the Gaussian case such an undirected graph is used to describe conditional independence relations among such components. In this paper, we consider a continuous-time Gaussian model which is accessible to observations only at time . We introduce the concept of infinitesimal conditional independence for such a model. Then, we address the corresponding graphical model selection problem,...
The synthesis of a feedforward unit for optimal decoupling of measurable or previewed signals in discrete-time linear time-invariant systems is considered. It is shown that an optimal compensator can be achieved by connecting a finite impulse response (FIR) system and a stable dynamic unit. To derive the FIR system convolution profiles an easily implementable computational scheme based on pseudoinversion (possibly nested to avoid computational constraints) is proposed, while the dynamic unit...
In this work, a feedforward dynamic controller is devised in order to achieve H2-optimal rejection of signals known with finite preview, in discrete-time systems. The feedforward approach requires plant stability and, more generally, robustness with respect to parameter uncertainties. On standard assumptions, those properties can be guaranteed by output dynamic feedback, while dynamic feedforward is specifically aimed at taking advantage of the available preview of the signals to be rejected, in...
In this paper we first present a full order controller for a multi- input, multi-output (MIMO) adaptive optics system. We apply model reduction techniques to the full order controller and demonstrate that the closed-loop (CL) system with the reduced order controller achieves the same high level of performance. Upon closer examination of the structure of the reduced order controller it is found that the dynamical behavior of the reduced order controller can be accurately approximated by...
In this paper, stabilizing problems in control design are addressed for linear discrete-time systems, reflecting equality constraints tying together some state variables. Based on an enhanced representation of the bounded real lemma for discretetime systems, the existence of a state feedback control for such conditioned stabilization is proven, and an LMI-based design procedure is provided. The control law gain computation method used circumvents generally an ill-conditioned singular design task....
This paper considers the inversion problem related to the
manipulation of quantum
systems using laser-matter interactions. The focus
is on the identification of the field free Hamiltonian and/or
the dipole moment of a
quantum system. The evolution of the system is given by the Schrödinger
equation. The available data are observations as a function of time
corresponding to dynamics generated by electric fields. The
well-posedness of the problem is proved, mainly focusing on the uniqueness of
the...
The importance of “control variations” for obtaining local approximations
of the reachable set of nonlinear control systems is well known.
Heuristically, if one can construct control variations in all possible directions,
then the considered control system is small-time locally controllable
(STLC). Two concepts of control variations of higher order are introduced
for the case of smooth control systems. The relation between these variations
and the small-time local controllability is studied and...
This paper is concerned with the construction of local observers for nonlinear systems without inputs, satisfying an observability rank condition. The aim of this study is, first, to define an homogeneous approximation that keeps the observability property unchanged at the origin. This approximation is further used in the synthesis of a local observer which is proven to be locally convergent for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer with the...
The paper proposes a design procedure for the creation of a robust and effective hybrid algorithm, tailored to and capable of carrying out a given design optimisation task. In the course of algorithm creation, a small set of simple optimisation methods is chosen, out of which those performing best will constitute the hybrid algorithm. The simplicity of the method allows implementing ad-hoc modifications if unexpected adverse features of the optimisation problem are found. It is postulated to model...
Currently displaying 741 –
760 of
1698