Displaying 81 – 100 of 159

Showing per page

Special issue on decentralized control of large scale complex systems

Lubomír Bakule (2009)

Kybernetika

This special issue provides information on current and future research directions in the emerging field of Decentralized Control of Large Scale Complex Systems. There is generally adopted view that a dynamic system is large scale complex whenever it is necessary to partition its analysis or synthesis problem to manageable subproblems. Its fundamental characteristics in modeling and control are high dimensionality, uncertainty, information structure constraints, and delays. Theory of large scale...

SPR0 substitutions and families of algebraic Riccati equations

G. Fernández-Anaya, J. C. Martínez García, Vladimír Kučera, D. Aguilar George (2006)

Kybernetika

We study in this paper Algebraic Riccati Equations associated with single-input single-output linear time-invariant systems bounded in H -norm. Our study is focused in the characterization of families of Algebraic Riccati Equations in terms of strictly positive real (of zero relative degree) substitutions applied to the associated H -norm bounded system, each substitution characterizing then a particular member of the family. We also consider here Algebraic Riccati Equations associated with systems...

Spreadability, Vulnerability and Protector Control

A. Bernoussi (2010)

Mathematical Modelling of Natural Phenomena

In this work, we present some concepts recently introduced in the analysis and control of distributed parameter systems: Spreadability, vulnerability and protector control. These concepts permit to describe many biogeographical phenomena, as those of pollution, desertification or epidemics, which are characterized by a spatio-temporal evolution

Stabilisation frontière de problèmes de Ventcel

Amar Heminna (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic system...

Stability analysis and H control of discrete T-S fuzzy hyperbolic systems

Ruirui Duan, Junmin Li, Yanni Zhang, Ying Yang, Guopei Chen (2016)

International Journal of Applied Mathematics and Computer Science

This paper focuses on the problem of constraint control for a class of discrete-time nonlinear systems. Firstly, a new discrete T-S fuzzy hyperbolic model is proposed to represent a class of discrete-time nonlinear systems. By means of the parallel distributed compensation (PDC) method, a novel asymptotic stabilizing control law with the “soft” constraint property is designed. The main advantage is that the proposed control method may achieve a small control amplitude. Secondly, for an uncertain...

Stability analysis and synthesis of systems subject to norm bounded, bounded rate uncertainties

Francesco Amato (2000)

Kybernetika

In this paper we consider a linear system subject to norm bounded, bounded rate time-varying uncertainties. Necessary and sufficient conditions for quadratic stability and stabilizability of such class of uncertain systems are well known in the literature. Quadratic stability guarantees exponential stability in presence of arbitrary time-varying uncertainties; therefore it becomes a conservative approach when, as it is the case considered in this paper, the uncertainties are slowly-varying in time....

Stability Analysis of Cell Dynamics in Leukemia

H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault (2012)

Mathematical Modelling of Natural Phenomena

In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized...

Stabilization of a coupled multidimensional system.

Serge Nicaise, Abdoulaye Sène (2006)

Revista Matemática Complutense

We introduce a model of a vibrating multidimensional structure made of a n-dimensional body and a one-dimensional rod. We actually consider the anisotropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli beam in the one-dimensional rod. These equations are coupled via their boundaries. Using appropriate feedbacks on a part of the boundary we show the exponential decay of the energy of the system.

Stabilization of a layered piezoelectric 3-D body by boundary dissipation

Boris Kapitonov, Bernadette Miara, Gustavo Perla Menzala (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a linear coupled system of quasi-electrostatic equations which govern the evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the boundary, we study the uniform stabilization problem. We prove that this is indeed the case, provided some geometric conditions on the region and the interfaces hold. We also assume a monotonicity condition on the coefficients. As an application, we deduce exact controllability of the system with boundary control...

Currently displaying 81 – 100 of 159