Stabilization of heterogeneous Maxwell's equations by linear or nonlinear boundary feedbacks.
In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
A stabilization problem of second-order systems by non-linear feedback is considered. We discuss the case when only position feedback is available. The non-linear stabilizer is constructed by placing actuators and sensors in the same location and by using a parallel compensator. The stability of the closed-loop system is proved by LaSalle's theorem. The distinctive feature of the solution is that no transformation to a first-order system is invoked. The results of analytic and numerical computations...
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the...
The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended...
It is known that for affine nonlinear systems the drift-observability property (i. e. observability for zero input) is not sufficient to guarantee the existence of an asymptotic observer for any input. Many authors studied structural conditions that ensure uniform observability of nonlinear systems (i. e. observability for any input). Conditions are available that define classes of systems that are uniformly observable. This work considers the problem of state observation with exponential error...
In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows...
Let be a parabolic second order differential operator on the domain Given a function and such that the support of is contained in , we let be the solution to the equation:Given positive bounds we seek a function with support in such that the corresponding solution satisfies:We prove in this article that, under some regularity conditions on the coefficients of continuous solutions are unique and dense in the sense that can be -approximated, but an exact solution does not...
Let L be a parabolic second order differential operator on the domain Given a function and such that the support of û is contained in , we let be the solution to the equation: Given positive bounds we seek a function u with support in such that the corresponding solution y satisfies: We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that can be C0-approximated, but an exact solution...
In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix,...
A class of finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state equations with a single point delay in the state variables is considered. Using a theorem and methods adopted directly from deterministic controllability problems, necessary and sufficient conditions for various kinds of stochastic relative controllability are formulated and proved. It will be demonstrated that under suitable assumptions the relative controllability of an associated...
Finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state equations with multiple point delays in control are considered. Using the notation, theorems and methods used for deterministic controllability problems for linear dynamic systems with delays in control as well as necessary and sufficient conditions for various kinds of stochastic relative controllability in a given time interval are formulated and proved. It will be proved that, under...