Page 1 Next

Displaying 1 – 20 of 57

Showing per page

Observability inequalities and measurable sets

Jone Apraiz, Luis Escauriaza, Gengsheng Wang, C. Zhang (2014)

Journal of the European Mathematical Society

This paper presents two observability inequalities for the heat equation over Ω × ( 0 , T ) . In the first one, the observation is from a subset of positive measure in Ω × ( 0 , T ) , while in the second, the observation is from a subset of positive surface measure on Ω × ( 0 , T ) . It also proves the Lebeau-Robbiano spectral inequality when Ω is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.

Observer design for systems with unknown inputs

Stefen Hui, Stanisław Żak (2005)

International Journal of Applied Mathematics and Computer Science

Design procedures are proposed for two different classes of observers for systems with unknown inputs. In the first approach, the state of the observed system is decomposed into known and unknown components. The unknown component is a projection, not necessarily orthogonal, of the whole state along the subspace in which the available state component resides. Then, a dynamical system to estimate the unknown component is constructed. Combining the output of the dynamical system, which estimates the...

On a class of linear delay systems often arising in practice

Michel Fliess, Hugues Mounier (2001)

Kybernetika

We study the tracking control of linear delay systems. It is based on an algebraic property named π -freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.

On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays

Beata Sikora (2019)

Kybernetika

The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function f . The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time t > 0 is presented. A numerical...

On generalized inverses of singular matrix pencils

Klaus Röbenack, Kurt Reinschke (2011)

International Journal of Applied Mathematics and Computer Science

Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the...

On generalized Popov theory for delay systems

Silviu-Iulian Niculescu, Vlad Ionescu, Dan Ivanescu, Luc Dugard, Jean-Michel Dion (2000)

Kybernetika

This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an 2 norm bound constraint on disturbance attenuation. Note that the proposed results extend...

On global controllability of linear time dependent control systems

Alberto Tonolo (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let A , B be a linear time dependent control process, defined on an open interval J = ] a , ω [ with a - and ω ; in this paper we give a description of the function τ : I J , τ ( t ) = inf { t > t : ( A , B ) is t , t -globally controllable from 0 } where I = { t J : t J with A , B t , t -globally controllable from 0 } .

Currently displaying 1 – 20 of 57

Page 1 Next