Displaying 361 – 380 of 441

Showing per page

Stabilisation frontière de problèmes de Ventcel

Amar Heminna (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic system...

Stabilisation uniforme d’une équation des poutres d’Euler-Bernoulli

Naji Yebari, Abderahmane Elkhattat (2003)

Annales mathématiques Blaise Pascal

Dans ce travail, nous étudions une équation des poutres d’Euler-Bernoulli, on contrôle par combinaison linéaire de vitesse et vitesse de rotation appliquées à l’une des extrémités du système. Tout d’abord nous montrons que le problème est bien posé et qu’il y a stabilité uniforme sous certaines conditions portant sur les coefficients de feedback. Puis nous estimons le taux optimal de décroissance de l’énergie du système par la méthode de Shkalikov.

Stabilization of a 1-D tank modeled by the shallow water equations

Christophe Prieur, Jonathan de Halleux (2002)

Journées équations aux dérivées partielles

We consider a tank containing a fluid. The tank is subjected to a one-dimensional horizontal move and the motion of the fluid is described by the shallow water equations. By means of a Lyapunov approach, we deduce control laws to stabilize the fluid's state and the tank's position. Although global asymptotic stability is yet to be proved, we numerically simulate the system and observe the stabilization for different control situations.

Stabilization of a coupled multidimensional system.

Serge Nicaise, Abdoulaye Sène (2006)

Revista Matemática Complutense

We introduce a model of a vibrating multidimensional structure made of a n-dimensional body and a one-dimensional rod. We actually consider the anisotropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli beam in the one-dimensional rod. These equations are coupled via their boundaries. Using appropriate feedbacks on a part of the boundary we show the exponential decay of the energy of the system.

Stabilization of a hybrid system with a nonlinear nonmonotone feedback

Eduard FEIREISL, Geoffrey O'DOWD (2010)

ESAIM: Control, Optimisation and Calculus of Variations

For a hybrid system composed of a cable with masses at both ends, we prove the existence of solutions for a class of nonlinear and nonmonotone feedback laws by means of a priori estimates. Assuming some local monotonicity, strong stabilization is obtained thanks to some Riemann's invariants technique and La Salle's principle.

Stabilization of second order evolution equations with unbounded feedback with delay

Serge Nicaise, Julie Valein (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider abstract second order evolution equations with unbounded feedback with delay. Existence results are obtained under some realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.

Stabilization of Timoshenko beam by means of pointwise controls

Gen-Qi Xu, Siu Pang Yung (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...

Stabilization of Timoshenko Beam by Means of Pointwise Controls

Gen-Qi Xu, Siu Pang Yung (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the...

Static hedging of barrier options with a smile : an inverse problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of u ^ is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L , continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C 0 -approximated, but an exact solution does not...

Static Hedging of Barrier Options with a Smile: An Inverse Problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of û is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C0-approximated, but an exact solution...

Sturm-Liouville systems are Riesz-spectral systems

Cédric Delattre, Denis Dochain, Joseph Winkin (2003)

International Journal of Applied Mathematics and Computer Science

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.

Sufficient optimality conditions for multivariable control problems

Andrzej Nowakowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study optimal control problems for partial differential equations (focusing on the multidimensional differential equation) with control functions in the Dirichlet boundary conditions under pointwise control (and we admit state - by assuming weak hypotheses) constraints.

Currently displaying 361 – 380 of 441