Displaying 21 – 40 of 107

Showing per page

Cooperative-corrector multivariable fuzzy controller.

M.ª Cristina Rivero, P. Lasso, Félix Monasterio-Huelin (1998)

Mathware and Soft Computing

This paper deals with the decomposition problem of a multivariable fuzzy controller. For this purpose, the use of notions taken from the framework of the Game Theory is proposed. Using the notion of couple between variables, a partition of the rule space in subsystems is obtained. The subsystems are considered players that correct the actions of the others. These ideas are applied to the control of a polymerization reactor (CSTR).

Decomposition of the fuzzy inference system for implementation in the FPGA structure

Bernard Wyrwoł, Edward Hrynkiewicz (2013)

International Journal of Applied Mathematics and Computer Science

The paper presents the design and implementation of a digital rule-relational fuzzy logic controller. Classical and decomposed logical structures of fuzzy systems are discussed. The second allows a decrease in the hardware cost of the fuzzy system and in the computing time of the final result (fuzzy or crisp), especially when referring to relational systems. The physical architecture consists of IP modules implemented in an FPGA structure. The modules can be inserted into or removed from the project...

Delay-dependent generalized H₂ control for discrete T-S fuzzy large-scale stochastic systems with mixed delays

Jiangrong Li, Junmin Li, Zhile Xia (2011)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with the problem of stochastic stability and generalized H₂ control for discrete-time fuzzy largescale stochastic systems with time-varying and infinite-distributed delays. Large-scale interconnected systems consist of a number of discrete-time interconnected Takagi-Sugeno (T-S) subsystems. First, a novel Delay-Dependent Piecewise Lyapunov-Krasovskii Functional (DDPLKF) is proposed, in which both the upper and the lower bound of delays are considered. Then, two improved delay-dependent...

Design of reaching phase for variable structure controller based on SVD method

Goshaidas Ray, Sitansu Dey (2004)

Kybernetika

This paper considers a design of variable structure with sliding mode controller for a class of uncertain dynamic system based on Singular Value Decomposition (SVD) method. The proposed method reduces the number of switching gain vector components and performs satisfactorily while the external disturbance does not satisfy the matching conditions. Subsequently the stability of the global system is studied and furthermore, the design of switched gain matrix elements based on fuzzy logic approach provides...

Design of reaching phase for variable structure controller based on Householder transformation

Goshaidas Ray, Sitansu Dey, T. K. Bhattacharyya (2005)

Kybernetika

The paper presents control signals generation methods, preventing the excitation of residual vibration in slightly damped oscillational systems. It is focused on the feedforward methods, as most of the vibrations in examined processes are induced by the control, while the influence of disturbances is mostly negligible. Application of these methods involves ensuring of the insensitivity to natural frequency change, which can be reached in classical approach only by considerable increase of transient...

Direct adaptive control of unknown nonlinear systems using a new neuro-fuzzy method together with a novel approach of parameter hopping

Dimitris Theodoridis, Yiannis Boutalis, Manolis Christodoulou (2009)

Kybernetika

The direct adaptive regulation for affine in the control nonlinear dynamical systems possessing unknown nonlinearities, is considered in this paper. The method is based on a new Neuro-Fuzzy Dynamical System definition, which uses the concept of Fuzzy Dynamical Systems (FDS) operating in conjunction with High Order Neural Network Functions (F-HONNFs). Since the plant is considered unknown, we first propose its approximation by a special form of a fuzzy dynamical system (FDS) and in the sequel the...

Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability

Piotr M. Marusak, Piotr Tatjewski (2009)

International Journal of Applied Mathematics and Computer Science

Dual-mode fuzzy dynamic matrix control (fuzzy DMC-FDMC) algorithms with guaranteed nominal stability for constrained nonlinear plants are presented. The algorithms join the advantages of fuzzy Takagi-Sugeno modeling and the predictive dual-mode approach in a computationally efficient version. Thus, they can bring an improvement in control quality compared with predictive controllers based on linear models and, at the same time, control performance similar to that obtained using more demanding algorithms...

Evolutionary design of fuzzy logic controllers using strongly-typed GP.

Enrique Alba, Carlos Cotta, José M. Troya (1999)

Mathware and Soft Computing

An evolutionary approach to the design of fuzzy logic controllers is presented in this paper. We propose the use of the genetic programming paradigm to evolve fuzzy rule-bases (internally represented as type-constrained syntactic trees). This model has been applied to the cart-centering problem, although it can be readily extended to other problems. The obtained results show that a good parameterization of the algorithm, and an appropriate evaluation function, can lead to near-optimal solutions.

Evolutionary optimization of interval mathematics-based design of a TSK fuzzy controller for anti-sway crane control

Jarosław Smoczek (2013)

International Journal of Applied Mathematics and Computer Science

A hybrid method combining an evolutionary search strategy, interval mathematics and pole assignment-based closed-loop control synthesis is proposed to design a robust TSK fuzzy controller. The design objective is to minimize the number of linear controllers associated with rule conclusions and tune the triangular-shaped membership function parameters of a fuzzy controller to satisfy stability and desired dynamic performances in the presence of system parameter variation. The robust performance objective...

Evolution-fuzzy rule based system with parameterized consequences

Piotr Czekalski (2006)

International Journal of Applied Mathematics and Computer Science

While using automated learning methods, the lack of accuracy and poor knowledge generalization are both typical problems for a rule-based system obtained on a given data set. This paper introduces a new method capable of generating an accurate rule-based fuzzy inference system with parameterized consequences using an automated, off-line learning process based on multi-phase evolutionary computing and a training data covering algorithm. The presented method consists of the following steps: obtaining...

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays

Qianhong Zhang, Lihui Yang, Daixi Liao (2011)

International Journal of Applied Mathematics and Computer Science

Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.

Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning

Robert Czabański (2006)

International Journal of Applied Mathematics and Computer Science

A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a "freezing" phase and ε-insensitive learning by solving a system of linear inequalities...

First applications of the Orbex coprocessor: Control of unmanned vehicles.

Ricardo García Rosa, Teresa de Pedro Lucio (2000)

Mathware and Soft Computing

The ORBEX coprocessor has been designed to execute the typical fuzzy operations of a system based on fuzzy rules. The first real application has been fuzzy controllers for electric cars. The values of the input variables, the position and the orientation of the car with respect the desired trajectory of reference, are obtained from the data provided by a DGPS boarded in the vehicle. The values of the output variables provided by the controller are the angle that the steering wheel has to be turned...

Forecasting return products in an integrated forward/reverse supply chain utilizing an ANFIS

D. Thresh Kumar, Hamed Soleimani, Govindan Kannan (2014)

International Journal of Applied Mathematics and Computer Science

Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies' capabilities in collecting End-of-Life (EOL) products, customers' interests...

Formal validation of fuzzy control techniques. Perspectives.

Antonio Sala, Pedro Albertos (1999)

Mathware and Soft Computing

In this paper, a survey of the state of the art and perspectives of two main lines of research in fuzzy control systems is presented: on one hand, the navas interpolative-functional line representing fuzzy systems as parameterized universal function approximators, thus applying nonlinear control and neural network paradigms; on the other hand, a logic-formal approach where fuzzy systems are analysed in terms of logic interpretations, exploring validation, consistency and completeness, uncertainty...

Further results on robust fuzzy dynamic systems with LMI 𝓓-stability constraints

Wudhichai Assawinchaichote (2014)

International Journal of Applied Mathematics and Computer Science

This paper examines the problem of designing a robust fuzzy controller with -stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust fuzzy controller that guarantees (i) the ₂-gain of the mapping from the exogenous input noise to the...

Fuzzy and neural control of an induction motor

Mouloud Denai, Sid Attia (2002)

International Journal of Applied Mathematics and Computer Science

This paper presents some design approaches to hybrid control systems combining conventional control techniques with fuzzy logic and neural networks. Such a mixed implementation leads to a more effective control design with improved system performance and robustness. While conventional control allows different design objectives such as steady state and transient characteristics of the closed loop system to be specified, fuzzy logic and neural networks are integrated to overcome the problems with...

Currently displaying 21 – 40 of 107