Displaying 101 – 120 of 215

Showing per page

Control structure in optimization problems of bar systems

Leszek Mikulski (2004)

International Journal of Applied Mathematics and Computer Science

Optimal design problems in mechanics can be mathematically formulated as optimal control tasks. The minimum principle is employed in solving such problems. This principle allows us to write down optimal design problems as Multipoint Boundary Value Problems (MPBVPs). The dimension of MPBVPs is an essential restriction that decides on numerical difficulties. Optimal control theory does not give much information about the control structure, i.e., about the sequence of the forms of the right-hand sides...

Control structures

Robert Bryant, Robert Gardner (1995)

Banach Center Publications

We define an extension of the classical notion of a control system which we call a control structure. This is a geometric structure which can be defined on manifolds whose underlying topology is more complicated than that of a domain in n . Every control structure turns out to be locally representable as a classical control system, but our extension has the advantage that it has various naturality properties which the (classical) coordinate formulation does not, including the existence of so-called...

Control systems on semi-simple Lie groups and their homogeneous spaces

Velimir Jurdjevic, Ivan Kupka (1981)

Annales de l'institut Fourier

In the present paper, we consider the class of control systems which are induced by the action of a semi-simple Lie group on a manifold, and we give a sufficient condition which insures that such a system can be steered from any initial state to any final state by an admissible control. The class of systems considered contains, in particular, essentially all the bilinear systems. Our condition is semi-algebraic but unlike the celebrated Kalman criterion for linear systems, it is not necessary. In...

Contrôlabilité exacte d'un problème avec conditions de Ventcel évolutives pour le système linéaire de l'élasticité.

Amar Heminna (2001)

Revista Matemática Complutense

In this work, we examine the exact controllability of the solution of a linear elasticity system, with evolutive Ventcel's conditions, (see [3]), in a bounded domain of R3. We use the Hilbert uniqueness methode, (H.U.M), of J.L.Lions, (see [9]); some multipliers are defined on the boundary; the curvature tensor (see [6]), appears when computing some boundary integrals. This work can be inserted in the framework of the study of the exact controllability and stabilisation of various problems with...

Contrôle et stabilisation d'ondes électromagnétiques

Kim Dang Phung (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the exact controllability and stabilization of Maxwell equation by using results on the propagation of singularities of the electromagnetic field. We will assume geometrical control condition and use techniques of the work of Bardos et al. on the wave equation. The problem of internal stabilization will be treated with more attention because the condition divE=0 is not preserved by the system of Maxwell with Ohm's law.

Currently displaying 101 – 120 of 215