Displaying 1321 – 1340 of 2294

Showing per page

Observer based control for strong practical stabilization of a class of uncertain time delay systems

Echi Nadhem, Amel Benabdallah (2019)

Kybernetika

In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we...

Observer design for a class of nonlinear discrete-time systems with time-delay

Yali Dong, Jinying Liu, Shengwei Mei (2013)

Kybernetika

The problem of observer design for a class of nonlinear discrete-time systems with time-delay is considered. A new approach of nonlinear observer design is proposed for the class of systems. Based on differential mean value theory, the error dynamic is transformed into linear parameter variable system. By using Lyapunov stability theory and Schur complement lemma, the sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the observer error converges asymptotically...

Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics

Xiushan Cai, Linling Liao, Junfeng Zhang, Wei Zhang (2016)

Kybernetika

Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the...

Observer design for systems with unknown inputs

Stefen Hui, Stanisław Żak (2005)

International Journal of Applied Mathematics and Computer Science

Design procedures are proposed for two different classes of observers for systems with unknown inputs. In the first approach, the state of the observed system is decomposed into known and unknown components. The unknown component is a projection, not necessarily orthogonal, of the whole state along the subspace in which the available state component resides. Then, a dynamical system to estimate the unknown component is constructed. Combining the output of the dynamical system, which estimates the...

Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization

Sergej Čelikovský (2004)

Kybernetika

This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor....

Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults

Ronghua Lei, Li Chen (2021)

Kybernetika

An adaptive sliding mode fault-tolerant controller based on fault observer is proposed for the space robots with joint actuator gain faults. Firstly, the dynamic model of the underactuated space robot is deduced combining conservation law of linear momentum with Lagrange method. Then, the dynamic model of the manipulator joints is obtained by using the mathematical operation of the block matrices, hence the measurement of the angular acceleration of the base attitude can be omitted. Subsequently,...

Observer-based fault-tolerant control against sensor failures for fuzzy systems with time delays

Shaocheng Tong, Gengjiao Yang, Wei Zhang (2011)

International Journal of Applied Mathematics and Computer Science

This paper addresses the problems of robust fault estimation and fault-tolerant control for Takagi-Sugeno (T-S) fuzzy systems with time delays and unknown sensor faults. A fuzzy augmented state and fault observer is designed to achieve the system state and sensor fault estimates simultaneously. Furthermore, based on the information of on-line fault estimates, an observer-based dynamic output feedback fault-tolerant controller is developed to compensate for the effect of faults by stabilizing the...

On a class of linear delay systems often arising in practice

Michel Fliess, Hugues Mounier (2001)

Kybernetika

We study the tracking control of linear delay systems. It is based on an algebraic property named π -freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.

On adaptive control for the continuous time-varying JLQG problem

Adam Czornik, Andrzej Świernik (2005)

International Journal of Applied Mathematics and Computer Science

In this paper the adaptive control problem for a continuous infinite time-varying stochastic control system with jumps in parameters and quadratic cost is investigated. It is assumed that the unknown coefficients of the system have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Under these assumptions it is shown that the optimal value of the quadratic cost can be reached based only on the values of these limits, which, in turn, can be estimated...

On adaptive control of a partially observed Markov chain

Giovanni Di Masi, Łukasz Stettner (1994)

Applicationes Mathematicae

A control problem for a partially observable Markov chain depending on a parameter with long run average cost is studied. Using uniform ergodicity arguments it is shown that, for values of the parameter varying in a compact set, it is possible to consider only a finite number of nearly optimal controls based on the values of actually computable approximate filters. This leads to an algorithm that guarantees nearly selfoptimizing properties without identifiability conditions. The algorithm is based...

Currently displaying 1321 – 1340 of 2294