A general approach for orthogonal 4-tap integer multiwavelet transforms.
To study the asymptotic properties of entropy estimates, we use a unified expression, called the -entropy. Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators are considered, so they can be used to construct confidence intervals and to test statistical hypotheses based on one or more samples. These results can also be applied to multinomial populations.
In this note we provide a natural way of defining exponential coordinates on the class of probabilities on the set Ω = [1,n] or on P = {p = (p1, ..., pn) ∈ Rn| pi > 0; Σi=1n pi = 1}. For that we have to regard P as a projective space and the exponential coordinates will be related to geodesic flows in Cn.
In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities (I). The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a...
We first prove an extremal property of the infinite Fibonacci* word f: the family of the palindromic prefixes {hn | n ≥ 6} of f is not only a circular code but “almost” a comma-free one (see Prop. 12 in Sect. 4). We also extend to a more general situation the notion of a necklace introduced for the study of trinucleotides codes on the genetic alphabet, and we present a hierarchy relating two important classes of codes, the comma-free codes and the circular ones.
In a series of papers many Boolean functions with good cryptographic properties were constructed using number-theoretic methods. We construct a large family of Boolean functions by using polynomials over finite fields, and study their cryptographic properties: maximum Fourier coefficient, nonlinearity, average sensitivity, sparsity, collision and avalanche effect.
We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.