Displaying 461 – 480 of 511

Showing per page

The forcing geodetic number of a graph

Gary Chartrand, Ping Zhang (1999)

Discussiones Mathematicae Graph Theory

For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u-v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u,v) for u, v ∈ S. A set S is a geodetic set if I(S) = V(G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic...

The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs

Ladislav Nebeský (2006)

Czechoslovak Mathematical Journal

If G is a connected graph of order n 1 , then by a hamiltonian coloring of G we mean a mapping c of V ( G ) into the set of all positive integers such that | c ( x ) - c ( y ) | n - 1 - D G ( x , y ) (where D G ( x , y ) denotes the length of a longest x - y path in G ) for all distinct x , y V ( G ) . Let G be a connected graph. By the hamiltonian chromatic number of G we mean min ( max ( c ( z ) ; z V ( G ) ) ) , where the minimum is taken over all hamiltonian colorings c of G . The main result of this paper can be formulated as follows: Let G be a connected graph of order n 3 . Assume that there exists a subgraph...

The i-chords of cycles and paths

Terry A. McKee (2012)

Discussiones Mathematicae Graph Theory

An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ {4,6}, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ {4,5}, every path P with |V(P)|...

The induced paths in a connected graph and a ternary relation determined by them

Ladislav Nebeský (2002)

Mathematica Bohemica

By a ternary structure we mean an ordered pair ( X 0 , T 0 ) , where X 0 is a finite nonempty set and T 0 is a ternary relation on X 0 . By the underlying graph of a ternary structure ( X 0 , T 0 ) we mean the (undirected) graph G with the properties that X 0 is its vertex set and distinct vertices u and v of G are adjacent if and only if { x X 0 T 0 ( u , x , v ) } { x X 0 T 0 ( v , x , u ) } = { u , v } . A ternary structure ( X 0 , T 0 ) is said to be the B-structure of a connected graph G if X 0 is the vertex set of G and the following statement holds for all u , x , y X 0 : T 0 ( x , u , y ) if and only if u belongs to an induced x - y ...

The inertia of unicyclic graphs and bicyclic graphs

Ying Liu (2013)

Discussiones Mathematicae - General Algebra and Applications

Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic...

The maximum genus, matchings and the cycle space of a graph

Hung-Lin Fu, Martin Škoviera, Ming-Chun Tsai (1998)

Czechoslovak Mathematical Journal

In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .

The Ramsey number r(C₇,C₇,C₇)

Ralph Faudree, Annette Schelten, Ingo Schiermeyer (2003)

Discussiones Mathematicae Graph Theory

Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.

The Saturation Number for the Length of Degree Monotone Paths

Yair Caro, Josef Lauri, Christina Zarb (2015)

Discussiones Mathematicae Graph Theory

A degree monotone path in a graph G is a path P such that the sequence of degrees of the vertices in the order in which they appear on P is monotonic. The length (number of vertices) of the longest degree monotone path in G is denoted by mp(G). This parameter, inspired by the well-known Erdős- Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter mp(G). We call G saturated if, for every edge e added to G, mp(G + e) > mp(G),...

The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices

Muhuo Liu, Xuezhong Tan, Bo Lian Liu (2010)

Czechoslovak Mathematical Journal

In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with n vertices and k pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with n vertices and k pendant vertices, respectively....

The structure and existence of 2-factors in iterated line graphs

Michael Ferrara, Ronald J. Gould, Stephen G. Hartke (2007)

Discussiones Mathematicae Graph Theory

We prove several results about the structure of 2-factors in iterated line graphs. Specifically, we give degree conditions on G that ensure L²(G) contains a 2-factor with every possible number of cycles, and we give a sufficient condition for the existence of a 2-factor in L²(G) with all cycle lengths specified. We also give a characterization of the graphs G where L k ( G ) contains a 2-factor.

The Turán Number of the Graph 2P5

Halina Bielak, Sebastian Kieliszek (2016)

Discussiones Mathematicae Graph Theory

We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.

The Turàn number of the graph 3P4

Halina Bielak, Sebastian Kieliszek (2014)

Annales UMCS, Mathematica

Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)

Currently displaying 461 – 480 of 511