The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 369

Showing per page

L -functions of automorphic forms and combinatorics: Dyck paths

Laurent Habsieger, Emmanuel Royer (2004)

Annales de l'Institut Fourier

We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the L -functions of modular forms of G L ( 2 ) and G L ( 3 ) . We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.

La conjecture de Birch et Swinnerton-Dyer 𝐩 -adique

Pierre Colmez (2002/2003)

Séminaire Bourbaki

La conjecture de Birch et Swinnerton-Dyer prédit que l’ordre r du zéro en s = 1 de la fonction L d’une courbe elliptique E définie sur 𝐐 est égal au rang r du groupe de ses points rationnels. On sait démontrer cette conjecture si r = 0 ou 1 , mais on n’a aucun résultat reliant r et r si r 2 . Nous expliquerons comment Kato démontre que la fonction L p -adique attachée à E a, en s = 1 , un...

La conjecture de modularité de Serre : le cas de conducteur 1

Jean-Pierre Wintenberger (2005/2006)

Séminaire Bourbaki

La conjecture dit qu’une représentation continue irréductible impaire du groupe de Galois de  Q dans un espace vectoriel de dimension  2 sur un corps fini F de caractéristique  p provient d’une forme modulaire. C. Khare vient de la prouver pour les représentations qui sont non ramifiées hors de  p .

M 2 -rank differences for partitions without repeated odd parts

Jeremy Lovejoy, Robert Osburn (2009)

Journal de Théorie des Nombres de Bordeaux

We prove formulas for the generating functions for M 2 -rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.

Mean values related to the Dedekind zeta-function

Hengcai Tang, Youjun Wang (2024)

Czechoslovak Mathematical Journal

Let K / be a nonnormal cubic extension which is given by an irreducible polynomial g ( x ) = x 3 + a x 2 + b x + c . Denote by ζ K ( s ) the Dedekind zeta-function of the field K and a K ( n ) the number of integral ideals in K with norm n . In this note, by the higher integral mean values and subconvexity bound of automorphic L -functions, the second and third moment of a K ( n ) is considered, i.e., n x a K 2 ( n ) = x P 1 ( log x ) + O ( x 5 / 7 + ϵ ) , n x a K 3 ( n ) = x P 4 ( log x ) + O ( X 321 / 356 + ϵ ) , where P 1 ( t ) , P 4 ( t ) are polynomials of degree 1, 4, respectively, ϵ > 0 is an arbitrarily small number.

Currently displaying 121 – 140 of 369