The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 161

Showing per page

On higher moments of Hecke eigenvalues attached to cusp forms

Guodong Hua (2022)

Czechoslovak Mathematical Journal

Let f , g and h be three distinct primitive holomorphic cusp forms of even integral weights k 1 , k 2 and k 3 for the full modular group Γ = SL ( 2 , ) , respectively, and let λ f ( n ) , λ g ( n ) and λ h ( n ) denote the n th normalized Fourier coefficients of f , g and h , respectively. We consider the cancellations of sums related to arithmetic functions λ g ( n ) , λ h ( n ) twisted by λ f ( n ) and establish the following results: n x λ f ( n ) λ g ( n ) i λ h ( n ) j f , g , h , ε x 1 - 1 / 2 i + j + ε for any ε > 0 , where 1 i 2 , j 5 are any fixed positive integers.

On the average behavior of the Fourier coefficients of j th symmetric power L -function over certain sequences of positive integers

Anubhav Sharma, Ayyadurai Sankaranarayanan (2023)

Czechoslovak Mathematical Journal

We investigate the average behavior of the n th normalized Fourier coefficients of the j th ( j 2 be any fixed integer) symmetric power L -function (i.e., L ( s , sym j f ) ), attached to a primitive holomorphic cusp form f of weight k for the full modular group S L ( 2 , ) over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum S j * : = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 ) , where x is sufficiently large, and L ( s , sym j f ) : = n = 1 λ sym j f ( n ) n s . When j = 2 , the error term which we obtain improves the earlier known result.

On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields

Matteo Longo (2006)

Annales de l’institut Fourier

Let E / F be a modular elliptic curve defined over a totally real number field F and let φ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of E over suitable quadratic imaginary extensions K / F . In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when [ F : ] is even and φ not new at any prime.

On the generation of the coefficient field of a newform by a single Hecke eigenvalue

Koopa Tak-Lun Koo, William Stein, Gabor Wiese (2008)

Journal de Théorie des Nombres de Bordeaux

Let f be a non-CM newform of weight k 2 . Let L be a subfield of the coefficient field of  f . We completely settle the question of the density of the set of primes p such that the p -th coefficient of  f generates the field  L . This density is determined by the inner twists of  f . As a particular case, we obtain that in the absence of nontrivial inner twists, the density is  1 for L equal to the whole coefficient field. We also present some new data on reducibility of Hecke polynomials, which suggest questions...

Currently displaying 81 – 100 of 161