The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
297
We extend the theory of spinor class fields and relative spinor class fields to study
representation problems in several classical linear algebraic groups over number fields.
We apply this theory to study the set of isomorphism classes of maximal orders of central
simple algebras containing a given maximal Abelian suborder. We also study isometric
embeddings of one skew-Hermitian Quaternionic lattice into another.
We find a generator of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.
For any number field with non-elementary -class group , , the punctured capitulation type of in its unramified cyclic cubic extensions , , is an orbit under the action of . By means of Artin’s reciprocity law, the arithmetical invariant is translated to the punctured transfer kernel type of the automorphism group of the second Hilbert -class field of . A classification of finite -groups with low order and bicyclic commutator quotient , , according to the algebraic invariant...
Let , with a positive integer, be a pure cubic number field. We show that the elements whose squares have the form for rational numbers form a group isomorphic to the group of rational points on the elliptic curve . This result will allow us to construct unramified quadratic extensions of pure cubic number fields .
If is a finite Galois extension of number fields with Galois group , then the kernel of the capitulation map of ideal class groups is isomorphic to the kernel of the transfer map where and is the Hilbert class field of . H. Suzuki proved that when is abelian, divides . We call a finite abelian group a transfer kernel for if for some group extension . After characterizing transfer kernels in terms of integral representations of , we show that is a transfer kernel for...
Let with where is a prime number such that or , the fundamental unit of , a prime number such that and , the Hilbert -class field of , the Hilbert -class field of and the Galois group of . According to E. Brown and C. J. Parry [7] and [8], , the Sylow -subgroup of the ideal class group of , is isomorphic to , consequently contains three extensions
Soient où et deux nombres premiers différents tels que , le -corps de classes de Hilbert de , le -corps de classes de Hilbert de et le groupe de Galois de . D’après [4], la -partie du groupe de classes de est de type , par suite contient trois extensions ; . Dans ce papier, on s’interesse au problème de capitulation des -classes d’idéaux de dans
Currently displaying 21 –
40 of
297