The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 260

Showing per page

( m , r ) -central Riordan arrays and their applications

Sheng-Liang Yang, Yan-Xue Xu, Tian-Xiao He (2017)

Czechoslovak Mathematical Journal

For integers m > r 0 , Brietzke (2008) defined the ( m , r ) -central coefficients of an infinite lower triangular matrix G = ( d , h ) = ( d n , k ) n , k as d m n + r , ( m - 1 ) n + r , with n = 0 , 1 , 2 , , and the ( m , r ) -central coefficient triangle of G as G ( m , r ) = ( d m n + r , ( m - 1 ) n + k + r ) n , k . It is known that the ( m , r ) -central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array G = ( d , h ) with h ( 0 ) = 0 and d ( 0 ) , h ' ( 0 ) 0 , we obtain the generating function of its ( m , r ) -central coefficients and give an explicit representation for the ( m , r ) -central Riordan array G ( m , r ) in terms of the Riordan array G . Meanwhile, the...

A Hadamard product involving inverse-positive matrices

Gassó Maria T., Torregrosa Juan R., Abad Manuel (2015)

Special Matrices

In this paperwe study the Hadamard product of inverse-positive matrices.We observe that this class of matrices is not closed under the Hadamard product, but we show that for a particular sign pattern of the inverse-positive matrices A and B, the Hadamard product A ◦ B−1 is again an inverse-positive matrix.

A new proof of the Millinen-Akdeniz theorem.

Heinz Neudecker (1989)

Qüestiió

A simple proof is given for a theorem by Milliken and Akdeniz (1977) about the difference of the Moore-Penrose inverses of two positive semi-definite matrices.

A new rank formula for idempotent matrices with applications

Yong Ge Tian, George P. H. Styan (2002)

Commentationes Mathematicae Universitatis Carolinae

It is shown that rank ( P * A Q ) = rank ( P * A ) + rank ( A Q ) - rank ( A ) , where A is idempotent, [ P , Q ] has full row rank and P * Q = 0 . Some applications of the rank formula to generalized inverses of matrices are also presented.

A note on ultrametric matrices

Xiao-Dong Zhang (2004)

Czechoslovak Mathematical Journal

It is proved in this paper that special generalized ultrametric and special 𝒰 matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and 𝒰 matrices, respectively. Moreover, we present a new class of inverse M -matrices which generalizes the class of 𝒰 matrices.

Currently displaying 1 – 20 of 260

Page 1 Next