The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 301 –
320 of
502
Let be the algebraic connectivity, and let be the Laplacian spectral radius of a -connected graph with vertices and edges. In this paper, we prove that
with equality if and only if is the complete graph or . Moreover, if is non-regular, then
where stands for the maximum degree of . Remark that in some cases, these two inequalities improve some previously known results.
In this note, we show how the determinant of the q-distance matrix Dq(T) of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph...
A matrix whose entries consist of elements from the set is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
We consider n × n real symmetric and hermitian random matrices Hₙ that are sums of a non-random matrix and of mₙ rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if mₙ/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hₙ converges...
We show that a central linear mapping of a projectively embedded Euclidean -space onto a projectively embedded Euclidean -space is decomposable into a central projection followed by a similarity if, and only if, the least singular value of a certain matrix has multiplicity . This matrix is arising, by a simple manipulation, from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates.
Currently displaying 301 –
320 of
502