Displaying 1481 – 1500 of 1682

Showing per page

Sur le problème inverse du calcul des variations : existence de lagrangiens associés à un spray dans le cas isotrope

Joseph Grifone, Zoltán Muzsnay (1999)

Annales de l'institut Fourier

En utilisant la version de Spencer-Goldschmidt du théorème de Cartan-Kähler nous étudions les conditions nécessaires et suffisantes pour qu’un système d’équations différentielles ordinaires du second ordre soit le système d’Euler-Lagrange associé à un lagrangien régulier. Dans la thèse de Z. Muzsnay cette technique a été déjà appliquée pour donner une version moderne du papier classique de Douglas qui traite le cas de la dimension 2. Ici nous considérons le cas où la dimension est arbitraire, nous...

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2007/2008)

Séminaire de théorie spectrale et géométrie

Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Sur le système de Nernst-Planck-Poisson-Boltzmann résultant de l’homogénéisation par convergence à double échelle

Gérard Gagneux, Olivier Millet (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Le système d’évolution de Nernst-Planck-Poisson-Boltzmann modélise les transferts ioniques en milieu poreux saturé en prenant en compte des interactions électrocapillaires au contact du substrat. Ce modèle présente un intérêt particulier en génie civil pour étudier la dégradation par corrosion des matériaux cimentaires, à structure micro-locale périodique, sous l’effet des ions chlorures. Les techniques d’homogénéisation sont alors un outil puissant pour élaborer un modèle macroscopique équivalent...

Sur le temps de vie de la turbulence bidimensionnelle

Thierry Gallay, Luis Miguel Rodrigues (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

On sait que toutes les solutions de l’équation de Navier-Stokes dans R 2 dont le tourbillon est intégrable convergent lorsque t vers un écoulement autosimilaire appelé tourbillon d’Oseen. Dans cet article, nous donnons une estimation du temps nécessaire à la solution pour atteindre un voisinage du tourbillon d’Oseen à partir d’une donnée initiale arbitraire, mais bien localisée en espace. Nous obtenons ainsi une borne supérieure sur le temps de vie de la turbulence bidimensionnelle libre, en fonction...

Sur l'équation de Ginzburg-Landau avec champ magnétique

Sylvia Serfaty (1998)

Journées équations aux dérivées partielles

On étudie la fonctionnelle d’énergie de Ginzburg-Landau J ( u , A ) = 1 2 Ω | A u | 2 + | h - h e x | 2 + κ 2 2 ( 1 - | u | 2 ) 2 , qui modélise les supraconducteurs cylindriques soumis à un champ magnétique extérieur h e x , dans l’asymptotique κ . On trouve et on décrit des branches de solutions stables des équations associées. On a une estimation sur la valeur critique H c 1 ( κ ) de h e x correspondant à une «transition de phase» où des vortex (c.à.d. zéros de u ) deviennent énergétiquement favorables. On obtient également dans le cas d’un disque, que pour h e x H c 1 comme pour h e x H c 1 , il existe à la...

Sur l’équation de Monge-Ampère complexe dans la boule de n

Alain Dufresnoy (1989)

Annales de l'institut Fourier

On considère le problème de Dirichlet : ( d d c u ) n = 0 dans B et u | B = ϕ B désigne la boule unité de n . Nous donnons une démonstration simple du fait que si ϕ C 1 , 1 ( B ) , alors u C 1 , 1 ( B ) ; de plus la croissance du coefficient de Lipschitz de la différentielle de u est contrôlée par l’inverse de la distance au bord.

Sur l’équation de Prandtl

David Gérard-Varet, Emmanuel Dormy (2008/2009)

Séminaire Équations aux dérivées partielles

L’objet de cette note est le problème de Cauchy pour l’équation de Prandtl, dans des espaces de régularité Sobolev. Nous discutons de façon synthétique des résultats récents [4], établissant le caractère fortement linéairement mal posé de ce problème.

Currently displaying 1481 – 1500 of 1682